scholarly journals Relationship between Clinical Parameters and Chromosomal Microarray Data in Infants with Developmental Delay

Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 305
Author(s):  
Zeeihn Lee ◽  
Byung Joo Lee ◽  
Sungwon Park ◽  
Donghwi Park

Chromosomal microarray (CMA) is considered a first-tier test for genetic analysis as it can be used to examine gene copy number variations (CNVs) throughout the entire genome, with enhanced sensitivity for detecting submicroscopic deletions and duplications. However, its cost can represent a heavy burden. Moreover, the diagnostic yield of CMA in infants with developmental delay (DD) was reported to be less than 10%. Therefore, we aimed to investigate the relationship between CMA results and clinical features and risk factors of DD. The study included 59 infants with DD who were recruited between August 2019 and February 2020 during a visit to the outpatient clinic of a rehabilitation department. We reviewed the clinical records of the infants regarding gender, age, body weight at birth, delivery method, brain imaging data, perinatal history, and parent-related clinical parameters, such as mother and father age at birth. The infants were categorized according to CMA results, and differences in clinical parameters were evaluated. Except for brain anomalies, there was no statistically significant differences between infants who had pathogenic and variants of unknown significance (VOUS)-likely pathogenic CNVs groups compared with those within the VOUS-likely no sub-classification, VOUS-likely benign, benign, and normal CNVs groups. The incidence of brain anomalies was significantly higher within infants with pathogenic and VOUS-likely pathogenic CNVs groups (p < 0.05). Our study suggests that infants with DD who present dysmorphism or brain anomaly may benefit from early CMA analysis, for adequate diagnosis and timely treatment. Further studies are warranted to confirm the relationship between DD clinical parameters and CMA results.

2021 ◽  
Vol 9 ◽  
Author(s):  
Eun Hye Yang ◽  
Yong Beom Shin ◽  
Soo Han Choi ◽  
Hye Won Yoo ◽  
Hye Young Kim ◽  
...  

Background and Objectives: Chromosomal microarray (CMA) is a first-tier genetic test for children with developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), and multiple congenital anomalies (MCA). In this study, we report our experiences with the use of CMA in Korean children with unexplained DD/ID.Methods: We performed CMA in a cohort of 308 children with DD/ID between January 2010 and September 2020. We also retrospectively reviewed their medical records. The Affymetrix CytoScan 750 K array with an average resolution of 100 kb was used to perform CMA.Results: Comorbid neurodevelopmental disorders were ASD (37 patients; 12.0%), epilepsy (34 patients; 11.0%), and attention deficit hyperactivity disorders (12 patients; 3.9%). The diagnostic yield was 18.5%. Among the 221 copy number variants (CNVs) identified, 70 CNVs (57 patients; 18.5%) were pathogenic. Deletion CNVs were more common among pathogenic CNVs (PCNVs) than in non-PCNVs (P &lt; 0.001). The size difference between PCNVs and non-PCNVs was not significant (P = 0.023). The number of included genes within CNV intervals was significantly higher in PCNVs (average 8.6; 0–347) than in non-PCNVs (average 47.5; 1–386) (P &lt; 0.001). Short stature and hearing difficulty were also more common in the PCNV group than in the non-PCNV group (P = 0.010 and 0.070, respectively).Conclusion: This study provides additional evidence for the usefulness of CMA in genetic testing of children with DD/ID in Korea. The pathogenicity of CNVs correlated with the number of included genes within the CNV interval and deletion type of the CNVs, but not with CNV size.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Wang ◽  
Bin Zhang ◽  
Lingna Zhou ◽  
Qin Zhou ◽  
Yingping Chen ◽  
...  

ObjectiveTo evaluate the effectiveness of non-invasive prenatal screening (NIPS) in prenatal screening of fetal pathogenic copy number variants (CNVs).Materials and MethodsWe evaluated the prenatal screening capacity using traditional and retrospective approaches. For the traditional method, we evaluated 24,613 pregnant women who underwent NIPS; cases which fetal CNVs were suggested underwent prenatal diagnosis with chromosomal microarray analysis (CMA). For the retrospective method, we retrospectively evaluated 47 cases with fetal pathogenic CNVs by NIPS. A systematic literature search was performed to compare the evaluation efficiency.ResultsAmong the 24,613 pregnant women who received NIPS, 124 (0.50%) were suspected to have fetal CNVs. Of these, 66 women underwent prenatal diagnosis with CMA and 13 had true-positive results. The positive predictive value (PPV) of NIPS for fetal CNVs was 19.7%. Among 1,161 women who did not receive NIPS and underwent prenatal diagnosis by CMA, 47 were confirmed to have fetal pathogenic CNVs. Retesting with NIPS indicated that 24 of these 47 cases could also be detected by NIPS, representing a detection rate (DR) of 51.1%. In total, 10 publications, namely, six retrospective studies and four prospective studies, met our criteria and were selected for a detailed full-text review. The reported DRs were 61.10–97.70% and the PPVs were 36.11–80.56%. The sizes of CNVs were closely related to the accuracy of NIPS detection. The DR was 41.9% (13/31) in fetuses with CNVs ≤ 3 Mb, but was 55.0% (11/20) in fetuses with CNVs &gt; 3 Mb. Finally, to intuitively show the CNVs accurately detected by NIPS, we mapped all CNVs to chromosomes according to their location, size, and characteristics. NIPS detected fetal CNVs in 2q13 and 4q35.ConclusionThe DR and PPV of NIPS for fetal CNVs were approximately 51.1% and 19.7%, respectively. Follow-up molecular prenatal diagnosis is recommended in cases where NIPS suggests fetal CNVs.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1397
Author(s):  
Qingwei Qi ◽  
Yulin Jiang ◽  
Xiya Zhou ◽  
Hua Meng ◽  
Na Hao ◽  
...  

The routine assessment to determine the genetic etiology for fetal ultrasound anomalies follows a sequential approach, which usually takes about 6–8 weeks turnaround time (TAT). We evaluated the clinical utility of simultaneous detection of copy number variations (CNVs) and single nucleotide variants (SNVs)/small insertion-deletions (indels) in fetuses with a normal karyotype with ultrasound anomalies. We performed CNV detection by chromosomal microarray analysis (CMA) or low pass CNV-sequencing (CNV-seq), and in parallel SNVs/indels detection by trio-based clinical exome sequencing (CES) or whole exome sequencing (WES). Eight-three singleton pregnancies with a normal fetal karyotype were enrolled in this prospective observational study. Pathogenic or likely pathogenic variations were identified in 30 cases (CNVs in 3 cases, SNVs/indels in 27 cases), indicating an overall molecular diagnostic rate of 36.1% (30/83). Two cases had both a CNV of uncertain significance (VOUS) and likely pathogenic SNV, and one case carried both a VOUS CNV and an SNV. We demonstrated that simultaneous analysis of CNVs and SNVs/indels can improve the diagnostic yield of prenatal diagnosis with shortened reporting time, namely, 2–3 weeks. Due to the relatively long TAT for sequential procedure for prenatal genetic diagnosis, as well as recent sequencing technology advancements, it is clinically necessary to consider the simultaneous evaluation of CNVs and SNVs/indels to enhance the diagnostic yield and timely TAT, especially for cases in the late second trimester or third trimester.


2020 ◽  
Vol 66 (3) ◽  
pp. 455-462 ◽  
Author(s):  
Yu Sun ◽  
Xiantao Ye ◽  
Yanjie Fan ◽  
Lili Wang ◽  
Xiaomei Luo ◽  
...  

Abstract Background Capture sequencing (CS) is widely applied to detect small genetic variations such as single nucleotide variants or indels. Algorithms based on depth comparison are becoming available for detecting copy number variation (CNV) from CS data. However, a systematic evaluation with a large sample size has not been conducted to evaluate the efficacy of CS-based CNV detection in clinical diagnosis. Methods We retrospectively studied 3010 samples referred to our diagnostic laboratory for CS testing. We used 68 chromosomal microarray analysis–positive samples (true set [TS]) and 1520 reference samples to build a robust CS-CNV pipeline. The pipeline was used to detect candidate clinically relevant CNVs in 1422 undiagnosed samples (undiagnosed set [UDS]). The candidate CNVs were confirmed by an alternative method. Results The CS-CNV pipeline detected 78 of 79 clinically relevant CNVs in TS samples, with analytical sensitivity of 98.7% and positive predictive value of 49.4%. Candidate clinically relevant CNVs were identified in 106 UDS samples. CNVs were confirmed in 96 patients (90.6%). The diagnostic yield was 6.8%. The molecular etiology includes aneuploid (n = 7), microdeletion/microduplication syndrome (n = 40), and Mendelian disorders (n = 49). Conclusions These findings demonstrate the high yield of CS-based CNV. With further improvement of our CS-CNV pipeline, the method may have clinical utility for simultaneous evaluation of CNVs and small variations in samples referred for pre- or postnatal analysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259518
Author(s):  
Sen Li ◽  
Lei-Ling Chen ◽  
Xing-Hua Wang ◽  
Hai-Jing Zhu ◽  
Xiao-Long Li ◽  
...  

Spontaneous abortion is an impeding factor for the success rates of human assistant reproductive technology (ART). Causes of spontaneous abortion include not only the pregnant mothers’ health conditions and lifestyle habits, but also the fetal development potential. Evidences had shown that fetal chromosome aneuploidy is associated with fetal spontaneous abortion, however, it is still not definite that whether other genome variants, like copy number variations (CNVs) or loss of heterozygosity (LOHs) is associated with the spontaneous abortion. To assess the relationship between the fetal genome variants and abortion during ART, a chromosomal microarray data including chromosomal information of 184 spontaneous aborted fetuses, 147 adult female patients and 78 adult male patients during ART were collected. We firstly analyzed the relationship of fetal aneuploidy with maternal ages and then compared the numbers and lengths of CNVs (< 4Mbp) and LOHs among adults and aborted fetuses. In addition to the already known association between chromosomal aneuploidy and maternal ages, from the chromosomal microarray data we found that the numbers and the accumulated lengths of short CNVs and LOHs in the aborted fetuses were significantly larger or longer than those in adults. Our findings indicated that the increased numbers and accumulated lengths of CNVs or LOHs might be associated with the spontaneous abortion during ART.


Author(s):  
Yu Sun ◽  
Jing Peng ◽  
Desheng Liang ◽  
Xiantao Ye ◽  
Na Xu ◽  
...  

Genome sequencing(GS) has been applied in the diagnosis of global developmental delay(GDD)/intellectual disability(ID). However, the performance in those with inconclusive results from chromosomal microarray analysis(CMA) and exome sequencing(ES) is unknown. We recruited 100 pediatric GDD/ID patients from multiple sites in China from February 2018 to August 2020 for GS. Patients have received at least one genomic diagnostic test prior to enrollment. Reanalysis of CMA/ES data was performed. The yield of GS was calculated and explanations for missed diagnoses by CMA/ES were investigated. Clinical utility was assessed by interviewing the parents by phone. The overall diagnostic yield of GS was 23%. Seven families could have been solved with reanalysis of ES data. 13 families were missed by previous CMA/ES due to improper method. Three remained unsolved after ES reanalysis due to allele dropout, complex variants missed by ES, and a CNV in untranslated regions. Follow-up of the diagnosed families revealed that nine families experienced changes in clinical management, including identification of targeted treatments, cessation of unnecessary treatment, and considerations for family planning. GS demonstrated high diagnostic yield and clinical utility in this cohort of undiagnosed GDD/ID patients, detecting a wide range of variant types of different sizes in a single workflow.


2021 ◽  
Author(s):  
Quentin TESTARD ◽  
Xavier VANHOYE ◽  
Laure RAYMOND ◽  
Jean-Francois TALY ◽  
Marie-Emmanuelle NAUD-BARREYRE ◽  
...  

Purpose: Despite exome (ES) or genome sequencing (GS) availability, chromosomal microarray (CMA) remains the first-line diagnostic tests in most rare disorders diagnostic work-up, looking for Copy-number variations (CNV), with a diagnostic yield of 10-20%. The question of the equivalence of CMA and ES in CNV calling is an organisational and economic question, especially when ordering a GS after a negative CMA and/or ES. Methods: This work measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNV on a retrospective cohort of 615 unrelated individuals. A prospective detection of ES CNV on a cohort of 1803 unrelated individuals was performed. Results: On the retrospective validation cohort every CNV was accurately detected (64/64 events). In the prospective cohort, 32 diagnostics were performed among the 1803 individuals with CNVs ranging from 704bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. Conclusions: Combining SNV and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare mendelian disorders. Before considering the prescription of a GS after a negatif ES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.


2018 ◽  
Vol 08 (01) ◽  
pp. 001-009
Author(s):  
Pinar Arican ◽  
Berk Ozyilmaz ◽  
Dilek Cavusoglu ◽  
Pinar Gencpinar ◽  
Kadri Erdogan ◽  
...  

AbstractChromosomal microarray (CMA) analysis for discovery of copy number variants (CNVs) is now recommended as a first-line diagnostic tool in patients with unexplained developmental delay/intellectual disability (DD/ID) and autism spectrum disorders. In this study, we present the results of CMA analysis in patients with DD/ID. Of 210 patients, pathogenic CNVs were detected in 26 (12%) and variants of uncertain clinical significance in 36 (17%) children. The diagnosis of well-recognized genetic syndromes was achieved in 12 patients. CMA analysis revealed pathogenic de novo CNVs, such as 11p13 duplication with new clinical features. Our results support the utility of CMA as a routine diagnostic test for unexplained DD/ID.


Sign in / Sign up

Export Citation Format

Share Document