scholarly journals The Effect of a Hydrogen Peroxide Preparation with Silver Ions on the Qualitative Traits of Table Eggs and on Reducing the mycotoxin biosynthesis

2021 ◽  
Author(s):  
Łukasz Tomczyk ◽  
Tomasz Szablewski ◽  
Kinga Stuper-Szablewska ◽  
Agata Biadała ◽  
Piotr Konieczny ◽  
...  
1984 ◽  
Vol 49 (10) ◽  
pp. 2222-2230 ◽  
Author(s):  
Viliam Múčka ◽  
Rostislav Silber

The catalytic and physico-chemical properties of low-temperature nickel-silver catalysts with nickel oxide concentrations up to 43.8% (m/m) are examined via decomposition of hydrogen peroxide in aqueous solution. The mixed catalysts prepared at 250°C are composed of partly decomposed silver carbonate or oxide and nickel carbonate or hydroxide decomposed to a low degree only and exhibiting a very defective crystal structure. The activity of these catalysts is determined by the surface concentration of silver ions, which is affected by the nickel component present. The latter also contributes to the thermal stability of the catalytic centres of the silver component, viz. the Ag+ ions. The concentration of these ions varies with the temperature of the catalyst treatment, the activity varies qualitatively in the same manner, and the system approaches the Ag-NiO composition. The catalytic centres are very susceptible to poisoning by chloride ions. A previous exposition of the catalyst to a gamma dose of 10 kGy from a 60Co source has no measurable effect on the physico-chemical properties of the system.


RSC Advances ◽  
2015 ◽  
Vol 5 (51) ◽  
pp. 41224-41229 ◽  
Author(s):  
Kuo Chiang Lin ◽  
Tsung Han Wu ◽  
Shen Ming Chen

Electrocodeposition of silver and silicomolybdate hybrid nanocomposite using negatively charged silicomolybdate to induce silver ions to co-deposit on electrode surface.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 123-129 ◽  
Author(s):  
Rami Pedahzur ◽  
Ovadia Lev ◽  
Badri Fattal ◽  
Hillel I. Shuval

The inactivation efficiencies of silver ions, hydrogen peroxide and their combination was studied as part of a performance evaluation of the combined disinfectant for drinking water applications. The major advantages of such combined disinfectant include, low toxicity of its components, long lasting residual effect and low disinfection by product formation. Specific strains of E. coli (E. coli-B (SR-9) and E. coli K-12) were used in this study as target microorganisms and the separate and combined inactivation efficiencies of silver and hydrogen peroxide were evaluated at different concentrations and exposure durations. Both, silver and hydrogen peroxide exhibited a significant inactivation performance even at concentrations that do not pose any health risk according to the EEC, WHO and the USEPA (the USEPA Maximum Contaminant Level (MCL) of silver is 90 ppb, and currently, there is no MCL for hydrogen peroxide but it is approved as a food additive in the USA). Combinations of 1:1000 silver:hydrogen peroxide (w) exhibited higher inactivation performance as compared with each of the disinfectants alone and in some cases a synergistic effect was observed, i.e., the combined disinfectant exhibited higher inactivation performance than the sum of the inactivation levels of the separate disinfectants. Thus, for example, one hour exposure to 30 ppb silver, 30 ppm hydrogen peroxide and their combination yielded 2.87, 0.65 and 5 logs of inactivation respectively. While the rate of inactivation shown by this combined disinfectant, now available commercially in a stabilized formulation is relatively slow, it may well hold promise as a secondary disinfectant providing long lasting residuals and biofilm control required for distribution systems. Its disinfection action may be similar to chloramines, the use of which has been recently outlawed in France and in Germany and which are now under careful scrutiny in other countries due to the formation of undesirable by-products.


2000 ◽  
Vol 42 (1-2) ◽  
pp. 187-192 ◽  
Author(s):  
R. Armon ◽  
N. Laot ◽  
O. Lev ◽  
H. Shuval ◽  
B. Fattal

Controlling biofilm growth in drinking and wastewater pipelines has attracted considerable scientific and technological attention over recent years. In this work, we have examined the biofilm control effectivity of a combined disinfectant comprised of hydrogen peroxide and silver ions. The performance of the combined disinfectant was compared to the effectivity of each of the ingredients alone and to the effectivity of chlorine disinfectant. Biofilm growth was investigated on uncoated and CaCO3 coated galvanized iron samples over prolonged exposure duration. It was found that the CaCO3 film does not significantly affect biofilm development. A combination of hydrogen peroxide and silver ions (30 ppm hydrogen peroxide and 30 ppb silver ions) were as effective in preventing film growth as hydrogen peroxide alone (30 ppm). Both compositions showed significant biofilm prevention effectivity as compared to silver ions alone. Biofilm prevention effectivity of chlorine (approximately 1 ppm) was considerably higher than that of the combined disinfectant. The bacteria that survived after 48 hours disinfection with hydrogen peroxide and the combined disinfectant showed high catalase activity hinting that hydrogen peroxide and the combined disinfectant may have a rather limited effectivity in continuous operation.


2019 ◽  
Vol 268 ◽  
pp. 05003 ◽  
Author(s):  
Kimmie Dela Cerna ◽  
Jose Isagani Janairo ◽  
Michael Angelo Promentilla

Geopolymers are a class of materials formed from treating alumina (Al2O3) and silica (SiO2) containing materials with an alkali activator. They are most notable for being environmentally-friendly substitutes to Ordinary Portland Cement; however, recent findings have shown that they may have potential as support matrices for antimicrobial agents such as nanosilver, particularly with the addition of foaming agents and setting time accelerators. In this study, nanosilver-coated geopolymer beads (AgGP) were made from fly ash (FA), calcined Baluko shells or pen shells (BS), and hydrogen peroxide (H). Addition of BS and H reduces the setting time and increases the porosity of the geopolymer beads. The beads were then dipped in AgNO3 and NaBH4 respectively to provide the nanosilver coating. When immersed in water, a controlled release of silver ions leaches out from the beads, neutralizing any bacteria in the water. It was found that the AgGP removed as much as 99.96% of the E. coli in a suspension originally at 105 CFU/mL.


Sign in / Sign up

Export Citation Format

Share Document