scholarly journals Climate Change and Infectious Disease Risk in Western Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors

2015 ◽  
Vol 12 (8) ◽  
pp. 9726-9749 ◽  
Author(s):  
Su-Mia Akin ◽  
Pim Martens ◽  
Maud Huynen
Science ◽  
2012 ◽  
Vol 336 (6080) ◽  
pp. 418-419 ◽  
Author(s):  
E. Lindgren ◽  
Y. Andersson ◽  
J. E. Suk ◽  
B. Sudre ◽  
J. C. Semenza

2011 ◽  
Vol 6 (8) ◽  
pp. 7-8 ◽  
Author(s):  
Sahotra Sarkar

A new challenge is unfolding in the Himalayas: a significant increase in the burden of infectious disease, driven by climate change. Vectors are moving beyond their historic ranges to higher elevations; water quality is deteriorating, and the available supply is diminishing. Preventive and ameliorative measures to address these problems require robust quantitative estimates of the size and spatial distribution of disease risk. Once enough data are available, disease risk can be mapped with predictive models so that appropriate policies can be formulated and implemented. Unfortunately, there has been virtually no quantitative epidemiological attention to this region.DOI: http://dx.doi.org/10.3126/hjs.v6i8.4921 Himalayan Journal of Sciences Vol.6 Issue 8 2010 pp.7-8


Author(s):  
Chelsea J. Weiskerger ◽  
João Brandão ◽  
Warish Ahmed ◽  
Asli Aslan ◽  
Lindsay Avolio ◽  
...  

Humans may be exposed to microbial pathogens at recreational beaches via environmental sources, such as water, sand, and aerosols. Although infectious disease risk from exposure to waterborne pathogens has been an active area of research for decades, sand is a relatively unexplored reservoir of pathogens and fecal indicator bacteria (FIB). Beach sand and water habitats provide unique advantages and challenges to pathogen introduction, growth, and persistence, as well as continuous exchange between habitats. Models of FIB and pathogen fate and transport in sandy beach habitats can help predict the risk of infectious disease from recreational water use, but filling knowledge gaps such as decay rates and potential for microbial growth in beach habitats is necessary for accurate modeling. Climatic variability, whether natural or anthropogenically-induced, adds complexity to predictive modeling, but may increase human exposure to waterborne pathogens via extreme weather events, warming of water bodies and sea level rise in many regions. The popularity of human recreational beach activities, combined with predicted climate change scenarios, could amplify the risk of human exposure to pathogens and related illnesses. Other global change trends such as increased population growth and urbanization are expected to exacerbate contamination events and the predicted impacts of increasing levels of waterborne pathogens on human health. Such changes will alter microbial population dynamics in beach habitats, and will consequently affect the assumptions and relationships used in population models and quantitative microbial risk assessment (QMRA). Here, we discuss the literature on microbial population and transport dynamics in sand-water continuum habitats at beaches, how these dynamics can be modeled, and how climate change and other anthropogenic influences (e.g., land use, urbanization) should be considered when using and developing more holistic, beachshed-based models.


PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000938
Author(s):  
Jason R. Rohr ◽  
Jeremy M. Cohen

Climate change is expected to have complex effects on infectious diseases, causing some to increase, others to decrease, and many to shift their distributions. There have been several important advances in understanding the role of climate and climate change on wildlife and human infectious disease dynamics over the past several years. This essay examines 3 major areas of advancement, which include improvements to mechanistic disease models, investigations into the importance of climate variability to disease dynamics, and understanding the consequences of thermal mismatches between host and parasites. Applying the new information derived from these advances to climate–disease models and addressing the pressing knowledge gaps that we identify should improve the capacity to predict how climate change will affect disease risk for both wildlife and humans.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Agata Keller ◽  
Somsubhra Chattopadhyay ◽  
Mikołaj Piniewski

Abstract Background Flow variability is considered a fundamental factor affecting riverine biota. Any alterations to flow regime can influence freshwater organisms, and this process is expected to change with the projected climate change. This systematic map, therefore, aims at investigating the impacts of natural (resulting from climatic variability), anthropogenic (resulting from direct human pressure), and climate change-induced flow variability on fish and macroinvertebrates of temperate floodplain rivers in Central and Western Europe. Particular focus will be placed on the effects of extreme low and high discharges. These rare events are known to regulate population size and taxonomic diversity. Methods All studies investigating the effects of flow variability on metrics concerning freshwater fish and macroinvertebrates will be considered in the map, particularly metrics such as: abundance, density, diversity, growth, migration, recruitment, reproduction, survival, or their substitutes, such as biomonitoring indices. Relevant flow variability will reflect (1) anthropogenic causes: dams, reservoirs, hydroelectric facilities, locks, levees, water abstraction, water diversion, land-use changes, road culverts; (2) natural causes: floods, droughts, seasonal changes; or (3) climate change. Geographically, the map will cover the ecoregion of Central and Western Europe, focusing on its major habitat type, namely “temperate floodplain rivers and wetlands”. The review will employ search engines and specialist websites, and cover primary and grey literature. No date, language, or document type restrictions will be applied in the search strategy. We expect the results to be primarily in English, although evidence (meeting all eligibility criteria) from other languages within the study area will also be included. We will also contact relevant stakeholders and announce an open call for additional information. Eligibility screening will be conducted at two levels: title and abstract, and full text. From eligible studies the following information will be extracted: the cause of flow variability, location, type of study, outcomes, etc. A searchable database containing extracted data will be developed and provided as supplementary material to the map report. The final narrative will describe the quantity and key characteristics of the available evidence, and identify knowledge gaps and knowledge clusters, i.e. subtopics sufficiently covered by existing studies allowing full systematic review and meta-analysis.


2021 ◽  
Author(s):  
Franziska Lechleitner ◽  
Christopher C. Day ◽  
Oliver Kost ◽  
Micah Wilhelm ◽  
Negar Haghipour ◽  
...  

<p>Terrestrial ecosystems are intimately linked with the global climate system, but their response to ongoing and future anthropogenic climate change remains poorly understood. Reconstructing the response of terrestrial ecosystem processes over past periods of rapid and substantial climate change can serve as a tool to better constrain the sensitivity in the ecosystem-climate response.</p><p>In this talk, we will present a new reconstruction of soil respiration in the temperate region of Western Europe based on speleothem carbon isotopes (δ<sup>13</sup>C). Soil respiration remains poorly constrained over past climatic transitions, but is critical for understanding the global carbon cycle and its response to ongoing anthropogenic warming. Our study builds upon two decades of speleothem research in Western Europe, which has shown clear correlation between δ<sup>13</sup>C and regional temperature reconstructions during the last glacial and the deglaciation, with exceptional regional coherency in timing, amplitude, and absolute δ<sup>13</sup>C variation. By combining innovative multi-proxy geochemical analysis (δ<sup>13</sup>C, Ca isotopes, and radiocarbon) on three speleothems from Northern Spain, and quantitative forward modelling of processes in soil, karst, and cave, we show how deglacial variability in speleothem δ<sup>13</sup>C is best explained by increasing soil respiration. Our study is the first to quantify and remove the effects of prior calcite precipitation (PCP, using Ca isotopes) and bedrock dissolution (open vs closed system, using the radiocarbon reservoir effect) from the speleothem δ<sup>13</sup>C signal to derive changes in respired δ<sup>13</sup>C over time. Our approach allows us to estimate the temperature sensitivity of soil respiration (Q<sub>10</sub>), which is higher than current measurements, suggesting that part of the speleothem signal may be related to a change in the composition of the soil respired δ<sup>13</sup>C. This is likely related to changing substrate through increasing contribution from vegetation biomass with the onset of the Holocene.</p><p>These results highlight the exciting possibilities speleothems offer as a coupled archive for quantitative proxy-based reconstructions of climate and ecosystem conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document