scholarly journals Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals

Author(s):  
Dongkoo Shon ◽  
Kichang Im ◽  
Jeong-Ho Park ◽  
Dong-Sun Lim ◽  
Byungtae Jang ◽  
...  

In recent years, stress analysis by using electro-encephalography (EEG) signals incorporating machine learning techniques has emerged as an important area of research. EEG signals are one of the most important means of indirectly measuring the state of the brain. The existing stress algorithms lack efficient feature selection techniques to improve the performance of a subsequent classifier. In this paper, genetic algorithm (GA)-based feature selection and k-nearest neighbor (k-NN) classifier are used to identify stress in human beings by analyzing electro-encephalography (EEG) signals. GA is incorporated in the stress analysis pipeline to effectively select subset of features that are suitable to enhance the performance of the k-NN classifier. The performance of the proposed method is evaluated using the Database for Emotion Analysis using Physiological Signals (DEAP), which is a public EEG dataset. A feature set is extracted in 32 EEG channels, which consists of statistical features, Hjorth parameters, band power, and frontal alpha asymmetry. The selected features through GA are used as input to the k-NN classifier to distinguish whether each EEG datapoint represents a stress state. To further consolidate, the effectiveness of the proposed method is compared with that of a state-of-the-art principle component analysis (PCA) method. Experimental results show that the proposed GA-based method outperforms PCA, with GA demonstrating 71.76% classification accuracy compared with 65.3% for PCA. Thus, it can be concluded that the proposed method can be effectively used for stress analysis with high classification accuracy.

Author(s):  
Alok Kumar Shukla ◽  
Pradeep Singh ◽  
Manu Vardhan

The explosion of the high-dimensional dataset in the scientific repository has been encouraging interdisciplinary research on data mining, pattern recognition and bioinformatics. The fundamental problem of the individual Feature Selection (FS) method is extracting informative features for classification model and to seek for the malignant disease at low computational cost. In addition, existing FS approaches overlook the fact that for a given cardinality, there can be several subsets with similar information. This paper introduces a novel hybrid FS algorithm, called Filter-Wrapper Feature Selection (FWFS) for a classification problem and also addresses the limitations of existing methods. In the proposed model, the front-end filter ranking method as Conditional Mutual Information Maximization (CMIM) selects the high ranked feature subset while the succeeding method as Binary Genetic Algorithm (BGA) accelerates the search in identifying the significant feature subsets. One of the merits of the proposed method is that, unlike an exhaustive method, it speeds up the FS procedure without lancing of classification accuracy on reduced dataset when a learning model is applied to the selected subsets of features. The efficacy of the proposed (FWFS) method is examined by Naive Bayes (NB) classifier which works as a fitness function. The effectiveness of the selected feature subset is evaluated using numerous classifiers on five biological datasets and five UCI datasets of a varied dimensionality and number of instances. The experimental results emphasize that the proposed method provides additional support to the significant reduction of the features and outperforms the existing methods. For microarray data-sets, we found the lowest classification accuracy is 61.24% on SRBCT dataset and highest accuracy is 99.32% on Diffuse large B-cell lymphoma (DLBCL). In UCI datasets, the lowest classification accuracy is 40.04% on the Lymphography using k-nearest neighbor (k-NN) and highest classification accuracy is 99.05% on the ionosphere using support vector machine (SVM).


2012 ◽  
Vol 532-533 ◽  
pp. 1455-1459
Author(s):  
Xiang Dong Li ◽  
Han Jia ◽  
Li Huang

K Nearest Neighbor (kNN) is a commonly-used text categorization algorithm. Previous studies mainly focused on improvements of the algorithm by modifying feature selection and k value selection. This research investigates the possibility to use Jensen-Shannon Divergence as similarity measure in the kNN classifier, and compares the performance, in terms of classification accuracy. The experiment denotes that the kNN algorithm based on Jensen-Shannon Divergence outperforms that based on Cosine value, while the performance is also largely dependent on number of categories and number of documents in a category.


2020 ◽  
pp. 1577-1597
Author(s):  
Kusuma Mohanchandra ◽  
Snehanshu Saha

Machine learning techniques, is a crucial tool to build analytical models in EEG data analysis. These models are an excellent choice for analyzing the high variability in EEG signals. The advancement in EEG-based Brain-Computer Interfaces (BCI) demands advanced processing tools and algorithms for exploration of EEG signals. In the context of the EEG-based BCI for speech communication, few classification and clustering techniques is presented in this book chapter. A broad perspective of the techniques and implementation of the weighted k-Nearest Neighbor (k-NN), Support vector machine (SVM), Decision Tree (DT) and Random Forest (RF) is explained and their usage in EEG signal analysis is mentioned. We suggest that these machine learning techniques provides not only potentially valuable control mechanism for BCI but also a deeper understanding of neuropathological mechanisms underlying the brain in ways that are not possible by conventional linear analysis.


Author(s):  
Naveen Irtiza ◽  
Humera Farooq

Electroencephalographic (EEG) signals are usually comprised of high-dimensional feature space. This work aims to assess the effect of reducing the number of features extracted from EEG recordings. A methodology is proposed that combines brain imaging and machine learning techniques to predict the cognitive state of the subjects whether they are feeling themselves in a safe or dangerous environment. The changes in the brain state are correlated with power modulations of oscillatory rhythms in recorded EEG signals called ERD / ERS (Event-related De-synchronization / Synchronization). In order to determine the optimized number of features, Genetic Algorithm (GA) will be used. GA has played instrumental role in solving optimization problems from diverse fields. In various studies and researches for Cognitive Man-Machine Communication, the algorithm has been used as an effective method to extract an optimal set of features.


Computers ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 37
Author(s):  
Nisha Vishnupant Kimmatkar ◽  
B. Vijaya Babu

The aim of this research study is to detect emotional state by processing electroencephalography (EEG) signals and test effect of meditation music therapy to stabilize mental state. This study is useful to identify 12 subtle emotions angry (annoying, angry, nervous), calm (calm, peaceful, relaxed), happy (excited, happy, pleased), sad (sleepy, bored, sad). A total 120 emotion signals were collected by using Emotive 14 channel EEG headset. Emotions are elicited by using three types of stimulus thoughts, audio and video. The system is trained by using captured database of emotion signals which include 30 signals of each emotion class. A total of 24 features were extracted by performing Chirplet transform. Band power is ranked as the prominent feature. The multimodel approach of classifier is used to classify emotions. Classification accuracy is tested for K-nearest neighbor (KNN), convolutional neural network (CNN), recurrent neural network (RNN) and deep neural network (DNN) classifiers. The system is tested to detect emotions of intellectually disable people. Meditation music therapy is used to stable mental state. It is found that it changed emotions of both intellectually disabled and normal participants from the annoying state to the relaxed state. A 75% positive transformation of mental state is obtained in the participants by using music therapy. This research study presents a novel approach for detailed analysis of brain EEG signals for emotion detection and stabilize mental state.


Author(s):  
E. Patricia Becerra-Sánchez ◽  
Angélica Reyes ◽  
Antonio Guerrero-Ibañez

In recent years, research has focused on generating mechanisms to assess the levels of subjects' cognitive workload when performing various activities that demand high concentration levels, such as driving a vehicle. These mechanisms have implemented several tools to analyze cognitive workload where the electroencephalographic (EEG) signals are the most used due to its high precision. However, one of the main challenges in the EEG signals implementing is finding the appropriate information to identify cognitive states. Here we show a new feature selection model for pattern recognition using information from EEG signals based on machine learning techniques called GALoRIS. GALoRIS combines Genetic Algorithms and Logistic Regression to create a new fitness function that identifies and selects the critical EEG features that contribute to recognizing high and low cognitive workload and structures a new dataset capable of optimizing the model's predictive process. We found that GALoRIS identifies data related to high and low cognitive workload of subjects while driving a vehicle using information extracted from multiple EEG signals, reducing the original dataset by more than 50%, maximizing the model's predictive capacity-achieving a precision rate greater than 90%.


Author(s):  
Kusuma Mohanchandra ◽  
Snehanshu Saha

Machine learning techniques, is a crucial tool to build analytical models in EEG data analysis. These models are an excellent choice for analyzing the high variability in EEG signals. The advancement in EEG-based Brain-Computer Interfaces (BCI) demands advanced processing tools and algorithms for exploration of EEG signals. In the context of the EEG-based BCI for speech communication, few classification and clustering techniques is presented in this book chapter. A broad perspective of the techniques and implementation of the weighted k-Nearest Neighbor (k-NN), Support vector machine (SVM), Decision Tree (DT) and Random Forest (RF) is explained and their usage in EEG signal analysis is mentioned. We suggest that these machine learning techniques provides not only potentially valuable control mechanism for BCI but also a deeper understanding of neuropathological mechanisms underlying the brain in ways that are not possible by conventional linear analysis.


Author(s):  
Cheng-San Yang ◽  
◽  
Li-Yeh Chuang ◽  
Chao-Hsuan Ke ◽  
Cheng-Hong Yang ◽  
...  

Microarray data referencing to gene expression profiles provides valuable answers to a variety of problems, and contributes to advances in clinical medicine. The application of microarray data to the classification of cancer types has recently assumed increasing importance. The classification of microarray data samples involves feature selection, whose goal is to identify subsets of differentially expressed gene potentially relevant for distinguishing sample classes and classifier design. We propose an efficient evolutionary approach for selecting gene subsets from gene expression data that effectively achieves higher accuracy for classification problems. Our proposal combines a shuffled frog-leaping algorithm (SFLA) and a genetic algorithm (GA), and chooses genes (features) related to classification. The K-nearest neighbor (KNN) with leave-one-out cross validation (LOOCV) is used to evaluate classification accuracy. We apply a novel hybrid approach based on SFLA-GA and KNN classification and compare 11 classification problems from the literature. Experimental results show that classification accuracy obtained using selected features was higher than the accuracy of datasets without feature selection.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5520
Author(s):  
Chun-Yao Lee ◽  
Kuan-Yu Huang ◽  
Yi-Xing Shen ◽  
Yao-Chen Lee

In this paper, we propose using particle swarm optimization (PSO) which can improve weighted k-nearest neighbors (PWKNN) to diagnose the failure of a wind power system. PWKNN adjusts weight to correctly reflect the importance of features and uses the distance judgment strategy to figure out the identical probability of multi-label classification. The PSO optimizes the weight and parameter k of PWKNN. This testing is based on four classified conditions of the 300 W wind generator which include healthy, loss of lubrication in the gearbox, angular misaligned rotor, and bearing fault. Current signals are used to measure the conditions. This testing tends to establish a feature database that makes up or trains classifiers through feature extraction. Not lowering the classification accuracy, the correlation coefficient of feature selection is applied to eliminate irrelevant features and to diminish the runtime of classifiers. A comparison with other traditional classifiers, i.e., backpropagation neural network (BPNN), k-nearest neighbor (k-NN), and radial basis function network (RBFN) shows that PWKNN has a higher classification accuracy. The feature selection can diminish the average features from 16 to 2.8 and can reduce the runtime by 61%. This testing can classify these four conditions accurately without being affected by noise and it can reach an accuracy of 83% in the condition of signal-to-noise ratio (SNR) is 20dB. The results show that the PWKNN approach is capable of diagnosing the failure of a wind power system.


Sign in / Sign up

Export Citation Format

Share Document