scholarly journals Relationships between Microbial Indicators and Pathogens in Recreational Water Settings

Author(s):  
Asja Korajkic ◽  
Brian McMinn ◽  
Valerie Harwood

Fecal pollution of recreational waters can cause scenic blight and pose a threat to public health, resulting in beach advisories and closures. Fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), and alternative indicators of fecal pollution (Clostridium perfringens and bacteriophages) are routinely used in the assessment of sanitary quality of recreational waters. However, fecal indicator bacteria (FIB), and alternative indicators are found in the gastrointestinal tract of humans, and many other animals and therefore are considered general indicators of fecal pollution. As such, there is room for improvement in terms of their use for informing risk assessment and remediation strategies. Microbial source tracking (MST) genetic markers are closely associated with animal hosts and are used to identify fecal pollution sources. In this review, we examine 73 papers generated over 40 years that reported the relationship between at least one indicator and one pathogen group or species. Nearly half of the reports did not include statistical analysis, while the remainder were almost equally split between those that observed statistically significant relationships and those that did not. Statistical significance was reported less frequently in marine and brackish waters compared to freshwater, and the number of statistically significant relationships was considerably higher in freshwater (p < 0.0001). Overall, significant relationships were more commonly reported between FIB and pathogenic bacteria or protozoa, compared to pathogenic viruses (p: 0.0022–0.0005), and this was more pronounced in freshwater compared to marine. Statistically significant relationships were typically noted following wet weather events and at sites known to be impacted by recent fecal pollution. Among the studies that reported frequency of detection, FIB were detected most consistently, followed by alternative indicators. MST markers and the three pathogen groups were detected least frequently. This trend was mirrored by reported concentrations for each group of organisms (FIB > alternative indicators > MST markers > pathogens). Thus, while FIB, alternative indicators, and MST markers continue to be suitable indicators of fecal pollution, their relationship with waterborne pathogens, particularly viruses, is tenuous at best and influenced by many different factors such as frequency of detection, variable shedding rates, differential fate and transport characteristics, as well as a broad range of site-specific factors such as the potential for the presence of a complex mixture of multiple sources of fecal contamination and pathogens.

1986 ◽  
Vol 49 (3) ◽  
pp. 196-202 ◽  
Author(s):  
DAVID W. COOK ◽  
R. D. ELLENDER

Oysters experimentally contaminated with indicator bacteria, Salmonella and poliovirus were used in relaying studies designed to measure microbial elimination under a variety of environmental conditions. Two factors, level of microorganism in the oyster and temperature of the water, were important in determining the length of time necessary to purge the contaminating organisms. Oysters under physiological stress cleansed at a slower rate than did healthy oysters. Based on the expected level of pathogen contamination in naturally polluted oysters, healthy relaid oysters were capable of cleansing in a 7-d period provided the temperature was above 10°C. These results were verified by following the elimination of indicator bacteria and poliovirus in commercially relaid oysters. Fecal indicator bacteria and enteric pathogenic bacteria were eliminated at similar rates but fecal coliform levels did not correlate with virus elimination. Relaying waters may contain some indicator bacteria and this study suggested that fecal coliforms may not be useful as end-point indicators for this method of oyster purification.


2009 ◽  
Vol 1 (3-4) ◽  
pp. 203-214 ◽  
Author(s):  
Eunice C. Chern ◽  
Kristen P. Brenner ◽  
Larry Wymer ◽  
Richard A. Haugland

2013 ◽  
Vol 79 (7) ◽  
pp. 2488-2492 ◽  
Author(s):  
Asja Korajkic ◽  
Brian R. McMinn ◽  
Valerie J. Harwood ◽  
Orin C. Shanks ◽  
G. Shay Fout ◽  
...  

ABSTRACTUsingin situsubtropical aquatic mesocosms, fecal source (cattle manure versus sewage) was shown to be the most important contributor to differential loss in viability of fecal indicator bacteria (FIB), specifically enterococci in freshwater andEscherichia coliin marine habitats. In this study, sunlight exposure and indigenous aquatic microbiota were also important contributors, whose effects on FIB also differed between water types.


2019 ◽  
Vol 17 (6) ◽  
pp. 896-909 ◽  
Author(s):  
Innocent K. Tumwebaze ◽  
Joan B. Rose ◽  
Nynke Hofstra ◽  
Matthew E. Verbyla ◽  
Isaac Musaazi ◽  
...  

Abstract Sanitation planners make complex decisions in the delivery of sanitation services to achieve health outcomes. We present findings from a stakeholder engagement workshop held in Kampala, Uganda, to educate, interact with, and solicit feedback from participants on how the relevant scientific literature on pathogens can be made more accessible to practitioners to support decision-making. We targeted Water, Sanitation and Hygiene (WASH) practitioners involved in different levels of service delivery. Practitioners revealed that different sanitation planning tools are used to inform decision-making; however, most of these tools are not user-friendly or adapted to meet their needs. Most stakeholders (68%) expressed familiarity with pathogens, yet less than half (46%) understood that fecal coliforms were bacteria and used as indicators for fecal pollution. A number of stakeholders were unaware that fecal indicator bacteria do not behave and persist the same as helminths, protozoa, or viruses, making fecal indicator bacteria inadequate for assessing pathogen reductions for all pathogen groups. This suggests a need for awareness and capacity development around pathogens found in excreta. The findings underscore the importance to engage stakeholders in the development of support tools for sanitation planning and highlighted broader opportunities to bridge science with practice in the WASH sector.


2010 ◽  
Vol 61 (12) ◽  
pp. 3102-3108 ◽  
Author(s):  
Sung Min Cha ◽  
Seung Won Lee ◽  
Yong Eun Park ◽  
Kyung Hwa Cho ◽  
Seungyoon Lee ◽  
...  

As a representative urban stream in Korea, the Gwangju (GJ) stream suffers from chronic fecal contamination. In this study, to characterize levels of fecal pollution in the GJ stream, the monthly monitoring data for seven years (from 2001 to 2007) and the hourly monitoring data from two field experiments were examined with respect to seasonal/daily variations and spatial distribution under wet and dry weather conditions. This research revealed that concentrations of fecal indicator bacteria strongly varied depending on the prevalent meteorological conditions. That is, during the dry daytime, fecal indicator bacteria concentrations decreased due to inactivation from solar irradiation, but rapidly increased in the absence of sunlight, suggesting external source inputs. In addition, bacterial concentrations substantially increased during rainfall events, due probably to a major contribution from combined sewer overflow. The observations in this study can be useful for implementing fecal pollution management strategies and for predicting fecal contamination as a function of meteorological conditions.


2001 ◽  
Vol 47 (3) ◽  
pp. 188-193 ◽  
Author(s):  
Pierre Payment ◽  
Robert Plante ◽  
Patrick Cejka

Pathogens and fecal indicator bacteria occurrence and removal were studied for a period of 6 months at the Montreal Urban Community wastewater treatment facility. With a capacity of about 7.6 million cubic metres per day (two billion U.S. gallons per day), it is the largest primary physico-chemical treatment plant in America. The plant discharges a nondisinfected effluent containing about 20 mg/L of suspended matter and 0.5 mg/L of total phosphorus on the basis of average annual concentrations. BDO5 (annual mean) is 75 mg/L before treatment and 32 mg/L after treatment. Samples were collected for a period of 6 months, and they demonstrated that the plant was not efficient at removing indicator bacteria and the pathogens tested. Fecal coliforms were the most numerous of the indicator bacteria and their removal averaged 25%. Fecal streptococci removal was 29%, while Escherichia coli removal was 12%. In untreated sewage, fecal coliforms, E. coli, and human enteric viruses were more numerous in summer and early autumn. Fecal streptococci counts remained relatively similar throughout the period. Clostridium perfringens removal averaged 51%. Giardia cysts levels were not markedly different throughout the study period, and 76% of the cysts were removed by treatment. Cryptosporidium oocyst counts were erratic, probably due to the methods, and removal was 27%. Human enteric viruses were detected in all samples of raw and treated wastewater with no removal observed (0%). Overall, the plant did not perform well for the removal of fecal indicator bacteria, human enteric viruses, or parasite cysts. Supplementary treatment and disinfection were recommended to protect public health. Various alternatives are being evaluated.


2006 ◽  
Vol 72 (2) ◽  
pp. 1604-1612 ◽  
Author(s):  
Rachel T. Noble ◽  
John F. Griffith ◽  
A. Denene Blackwood ◽  
Jed A. Fuhrman ◽  
Jason B. Gregory ◽  
...  

ABSTRACT The ubiquity of fecal indicator bacteria such as Escherichia coli and Enterococcus spp. in urban environments makes tracking of fecal contamination extremely challenging. A multitiered approach was used to assess sources of fecal pollution in Ballona Creek, an urban watershed that drains to the Santa Monica Bay (SMB) near Los Angeles, Calif. A mass-based design at six main-stem sites and four major tributaries over a 6-h period was used (i) to assess the flux of Enterococcus spp. and E. coli by using culture-based methods (tier 1); (ii) to assess levels of Enterococcus spp. by using quantitative PCR and to detect and/or quantify additional markers of human fecal contamination, including a human-specific Bacteroides sp. marker and enterovirus, using quantitative reverse transcriptase PCR (tier 2); and (iii) to assess the specific types of enterovirus genomes found via sequence analysis (tier 3). Sources of fecal indicator bacteria were ubiquitous, and concentrations were high, throughout Ballona Creek, with no single tributary dominating fecal inputs. The flux of Enterococcus spp. and E. coli averaged 109 to 1010 cells h−1 and was as high at the head of the watershed as at the mouth prior to discharge into the SMB. In addition, a signal for the human-specific Bacteroides marker was consistently detected: 86% of the samples taken over the extent during the study period tested positive. Enteroviruses were quantifiable in 14 of 36 samples (39%), with the highest concentrations at the site furthest upstream (Cochran). These results indicated the power of using multiple approaches to assess and quantify fecal contamination in freshwater conduits to high-use, high-priority recreational swimming areas.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1089
Author(s):  
Daniel Toribio-Avedillo ◽  
Anicet R. Blanch ◽  
Maite Muniesa ◽  
Lorena Rodríguez-Rubio

Bacteriophages are promising tools for the detection of fecal pollution in different environments, and particularly for viral pathogen risk assessment. Having similar morphological and biological characteristics, bacteriophages mimic the fate and transport of enteric viruses. Enteric bacteriophages, especially phages infecting Escherichia coli (coliphages), have been proposed as alternatives or complements to fecal indicator bacteria. Here, we provide a general overview of the potential use of enteric bacteriophages as fecal and viral indicators in different environments, as well as the available methods for their detection and enumeration, and the regulations for their application.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3335
Author(s):  
Viviana Fonti ◽  
Andrea Di Cesare ◽  
Jadranka Šangulin ◽  
Paola Del Negro ◽  
Mauro Celussi

Despite last decades’ interventions within local and communitarian programs, the Mediterranean Sea still receives poorly treated urban wastewater (sewage). Wastewater treatment plants (WWTPs) performing primary sewage treatments have poor efficiency in removing microbial pollutants, including fecal indicator bacteria, pathogens, and mobile genetic elements conferring resistance to antimicrobials. Using a combination of molecular tools, we investigated four urban WWTPs (i.e., two performing only mechanical treatments and two performing a subsequent conventional secondary treatment by activated sludge) as continuous sources of microbial pollution for marine coastal waters. Sewage that underwent only primary treatments was characterized by a higher content of traditional and alternative fecal indicator bacteria, as well as potentially pathogenic bacteria (especially Acinetobacter, Coxiella, Prevotella, Streptococcus, Pseudomonas, Vibrio, Empedobacter, Paracoccus, and Leptotrichia), than those subjected to secondary treatment. However, seawater samples collected next to the discharging points of all the WWTPs investigated here revealed a marked fecal signature, despite significantly lower values in the presence of secondary treatment of the sewage. WWTPs in this study represented continuous sources of antibiotic resistance genes (ARGs) ermB, qnrS, sul2, tetA, and blaTEM (the latter only for three WWTPs out of four). Still, no clear effects of the two depuration strategies investigated here were detected. Some marine samples were identified as positive to the colistin-resistance gene mcr-1, an ARG that threatens colistin antibiotics’ clinical utility in treating infections with multidrug-resistant bacteria. This study provides evidence that the use of sole primary treatments in urban wastewater management results in pronounced inputs of microbial pollution into marine coastal waters. At the same time, the use of conventional treatments does not fully eliminate ARGs in treated wastewater. The complementary use of molecular techniques could successfully improve the evaluation of the depuration efficiency and help develop novel solutions for the treatment of urban wastewater.


Sign in / Sign up

Export Citation Format

Share Document