scholarly journals Can Male Patient’s Age Affect the Cortical Bone Thickness of Jawbone for Dental Implant Placement? A Cohort Study

Author(s):  
Shiuan-Hui Wang ◽  
Yi-Chun Ko ◽  
Ming-Tzu Tsai ◽  
Lih-Jyh Fuh ◽  
Heng-Li Huang ◽  
...  

Dental implants are among the most common treatments for missing teeth. The thickness of the crestal cortical bone at the potential dental implant site is a critical factor affecting the success rate of dental implant surgery. However, previous studies have predominantly focused on female patients, who are at a high risk of osteoporosis, for the discussion of bone quality and quantity at the dental implant site. This study aimed to investigate the effect of male patients’ age on the crestal cortical bone of the jaw at the dental implant site by using dental cone-beam computed tomography (CBCT). This study performed dental CBCT on 84 male patients of various ages to obtain tomograms of 288 dental implant sites at the jawbone (41 sites in the anterior maxilla, 95 in the posterior maxilla, 59 in the anterior mandible, and 93 in the posterior mandible) for measuring the cortical bone thickness. A one-way analysis of variance and Scheffe’s test were performed on the measurement results to compare the cortical bone thickness at implant sites in the four jaw areas. The correlation between male patient age and cortical bone thickness at the dental implant site was determined. The four jaw areas in order of the cortical bone thickness were as follows: posterior mandible (1.07 ± 0.44 mm), anterior mandible (0.99 ± 0.30 mm), anterior maxilla (0.82 ± 0.32 mm), and posterior maxilla (0.71 ± 0.27 mm). Apart from dental implant sites in the anterior and posterior mandibles, no significant correlation was observed between male patients’ age and the cortical bone thickness at the dental implant site.

Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 710
Author(s):  
Shiuan-Hui Wang ◽  
Yen-Wen Shen ◽  
Lih-Jyh Fuh ◽  
Shin-Lei Peng ◽  
Ming-Tzu Tsai ◽  
...  

Dental implant surgery is a common treatment for missing teeth. Its survival rate is considerably affected by host bone quality and quantity, which is often assessed prior to surgery through dental cone-beam computed tomography (CBCT). Dental CBCT was used in this study to evaluate dental implant sites for (1) differences in and (2) correlations between cancellous bone density and cortical bone thickness among four regions of the jawbone. In total, 315 dental implant sites (39 in the anterior mandible, 42 in the anterior maxilla, 107 in the posterior mandible, and 127 in the posterior maxilla) were identified in dental CBCT images from 128 patients. All CBCT images were loaded into Mimics 15.0 to measure cancellous bone density (unit: grayscale value (GV) and cortical bone thickness (unit: mm)). Differences among the four regions of the jawbone were evaluated using one-way analysis of variance and Scheffe’s posttest. Pearson coefficients for correlations between cancellous bone density and cortical bone thickness were also calculated for the four jawbone regions. The results revealed that the mean cancellous bone density was highest in the anterior mandible (722 ± 227 GV), followed by the anterior maxilla (542 ± 208 GV), posterior mandible (535 ± 206 GV), and posterior maxilla (388 ± 206 GV). Cortical bone thickness was highest in the posterior mandible (1.15 ± 0.42 mm), followed by the anterior mandible (1.01 ± 0.32 mm), anterior maxilla (0.89 ± 0.26 mm), and posterior maxilla (0.72 ± 0.19 mm). In the whole jawbone, a weak correlation (r = 0.133, p = 0.041) was detected between cancellous bone density and cortical bone thickness. Furthermore, except for the anterior maxilla (r = 0.306, p = 0.048), no correlation between the two bone parameters was observed (all p > 0.05). Cancellous bone density and cortical bone thickness varies by implant site in the four regions of the jawbone. The cortical and cancellous bone of a jawbone dental implant site should be evaluated individually before surgery.


2017 ◽  
Vol 18 (9) ◽  
pp. 785-789 ◽  
Author(s):  
Ajai Gupta ◽  
Suprabha Rathee ◽  
Jaihans Agarwal ◽  
Renu B Pachar

ABSTRACT Aim Dental implants have emerged as a new treatment modality for the majority of patients complaining of missing teeth. Bone quantity and bone quality are among various factors which ensure the longevity of dental implant in the patient's mouth. The assessment of cortical bone thickness of the outer layer and the cancellous bone density by cone beam computed tomography (CBCT) has proved beneficial for the patient. This study aimed at presurgical measurement of crestal bone thickness at various implant sites using CBCT images. Materials and methods This study was conducted in the Department of Prosthodontics in the year 2015. It included 218 patients who wanted to replace missing teeth. Patients were subjected to CBCT scan using NewTom CBCT machine operating at 120 kVp and 5 mA with a resolution of 0.1 × 0.1 × 0.1 mm3. New Net Technologies (NNT) software with a slice thickness of 0.1 mm was used in this study. A total of 780 implant sites were identified on images of 218 patients. In all patients, the measurement of crestal bone thickness in the region of implant site was performed with NNT software. The buccolingual measurement of crestal bone was done in cross sections obtained after CBCT. Results Out of 218 patients, males were 110 and females were 108. The difference between gender was nonsignificant (p > 0.05). Out of 780 implant sites, 370 were in the maxilla and 410 were in mandible. The difference was nonsignificant (p > 0.05). Out of 780 implant sites, 210 were in anterior maxilla and 160 were in the posterior maxilla. Totally, 235 sites were in anterior mandible and 175 were in the posterior mandible. The distribution was nonsignificant (p = 0.15). The mean crestal bone thickness in anterior maxilla was 0.82 mm, in posterior maxilla was 0.76 mm, in anterior mandible was 1.08 mm, and in posterior mandible was 1.18 mm. The difference among regions was significant (p = 0.01). Conclusion The highest thickness of cortical bone was observed in posterior mandible followed by anterior mandible, anterior maxilla, and posterior maxilla. Thus, considering the less cortical thickness in the posterior maxillary region, the implant placement should be done with proper attention. Clinical significance Dental implant is the need of the hour. It is beneficial to patients in terms of longer survival rates. With CBCT, all measurements, such as bone quality and quantity have become easy because of three-dimensional nature. This has proved to be beneficial in the analysis of cortical bone thickness as well as measuring the distance from anatomical structures. How to cite this article Gupta A, Rathee S, Agarwal J, Pachar RB. Measurement of Crestal Cortical Bone Thickness at Implant Site: A Cone Beam Computed Tomography Study. J Contemp Dent Pract 2017;18(9):785-789.


2019 ◽  
Vol 30 (S19) ◽  
pp. 157-158
Author(s):  
Igor Linetskiy ◽  
Vladislav Demenko ◽  
Vitalij Nesvit ◽  
Larysa Linetska ◽  
Oleg Yefremov

2015 ◽  
Vol 662 ◽  
pp. 151-154
Author(s):  
Dušan Németh ◽  
František Lofaj ◽  
Ján Kučera

The stress distribution in cortical bone and dental implant has been modeled by finite element method (FEM) using linear static analysis in the case of monocortical and bicortical fixation of a real dental implant for three cortical bone thicknesses: 2 mm, 2.5 mm, 4 mm. The analysis revealed that the highest stresses in the cortical bone and in the implant after three-axial loading are localized at the edge of the cortical bone near the implant neck where bending moment is the highest. An increase of the maximum stresses has been observed with the decrease of the intraosseal length of the implant and cortical bone thickness.


2017 ◽  
Vol 19 (3) ◽  
pp. 440-446 ◽  
Author(s):  
Yi-Chun Ko ◽  
Heng-Li Huang ◽  
Yen-Wen Shen ◽  
Jyun-Yi Cai ◽  
Lih-Jyh Fuh ◽  
...  

Author(s):  
Igor Linetskiy ◽  
Vladyslav Demenko ◽  
Vitalij Nesvit ◽  
Larisa Linetska ◽  
Oleg Yefremov

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Marziyeh Shafizadeh ◽  
Azita Tehranchi ◽  
Saeed Reza Motamedian

Context: The labial cortical bone may influence the outcomes of several treatments including fresh socket implant placement and orthodontic treatments. A thin labial plate may contribute to increased risks of periodontal consequences during dental procedures. Acknowledgment of the average values may guide clinicians to take particular considerations in making treatment decisions. Therefore, this study aimed to systematically review the labial cortical bone thickness (LBT) in the anterior maxillary teeth. Objective: The primary purpose of this study was to review the LBT in the anterior maxillary teeth to present the range of average LBT in the global population. Evidence Acquisition: An electronic search was conducted in PubMed, Embase, ProQuest, Web of Science, and Scopus databases. English studies that measured the LBT in the maxillary anterior teeth using CT or CBCT scans were deemed relevant. Only studies performed on adult patients with a lack of periodontal disease were included. Results: A total of 49 studies were included. Mean LBT ranged 0.13 - 3.08, 0.29 - 4.2, and 0.36 - 4.5 mm in maxillary central incisor, lateral incisor, and canine, respectively. Expectedly, LBT was affected by the vertical level of the measurement point and increased toward the apex. In total, the LBT in the anterior maxilla ranged from 0.13 to 4.5 mm. In comparison with other populations, a relatively thin labial plate was evidenced in the Iranian populations. Conclusions: This study showed a wide range of LBT in the esthetic zone. A thin plate in the esthetic area necessitates caution in orthodontic treatments, particularly when tooth expansion or proclination is required. Additionally, wide ranges of reported values which are mostly under 2 mm, highlight the importance of CBCT acquisition before any fresh socket implant placement.


Author(s):  
Yi-Chun Ko ◽  
Ming-Tzu Tsai ◽  
Lih-Jyh Fuh ◽  
Min-Jia Tsai ◽  
Xuan-Hui Wang ◽  
...  

Satisfactory host bone quality and quantity promote greater primary stability and better osseointegration, leading to a high success rate in the use of dental implants. However, the increase in life expectancy as a result of medical advancements has led to an aging population, suggesting that osteoporosis may become a problem in clinical dental implant surgery. Notably, relative to the general population, bone insufficiency is more common in women with post-menopausal osteoporosis. The objective of this study was to compare the thickness of the crestal cortical bone at prospective dental implant sites between menopausal and non-menopausal women. Prospective dental implant sites in the jawbone were evaluated in two groups of women: a younger group (<50 years old), with 149 sites in 48 women, and an older group (>50 years old) with 191 sites, in 37 women. The thickness of the crestal cortical bone at the dental implant site was measured based on each patient’s dental cone-beam computed tomography images. For both groups, one-way analysis of variance and Tukey’s post-test were used to assess the correlation between cortical bone thickness and the presence of implants in the four jawbone regions. Student’s t-test was further used to compare differences between the older and younger groups. From the retrospective study results, for both groups, thickness of the crestal cortical bone was the highest in the posterior mandible, followed by anterior mandible, anterior maxilla, and posterior maxilla. Compared with the younger group, the older group had a lower mean thickness of the crestal cortical bone. Among the four regions, however, only in the posterior maxilla was the crestal cortical bone significantly thinner in the older group than in the younger group.


2013 ◽  
Vol 39 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Ahmet Umut Guler ◽  
Mahmut Sumer ◽  
Ibrahim Duran ◽  
Elif Ozen Sandikci ◽  
Nazife Tuba Telcioglu

The most important prerequisite for the success of an osseointegrated dental implant is achievement and maintenance of implant stability. The aim of the study was to measure the 208 Straumann dental implant stability quotient (ISQ) values during the osseointegration period and determine the factors that affect implant stability. A total of 164 of the implants inserted were standard surface, and 44 of them were SLActive surface. To determine implant stability as ISQ values, measurements were performed at the stage of implant placement and healing periods by the Osstell mentor. The ISQ value ranges showed a significant increase during the healing period. Except for the initial measurement, the posterior maxilla had the lowest ISQ values, and there was no significant difference among anterior mandible, posterior mandible, and anterior maxilla (P &lt; .05). Implant length did not have a significant influence on ISQ value (P &gt; .05). The second measurement was significantly higher in men compared with women (P &lt; .05). The second measurement was significantly higher than the others at 4.8 mm, and for the final measurement, there were no significant differences between 4.8 and 4.1 mm, which were higher than 3.3 mm (P &lt; .05). When comparing sandblasted, large-grit, acid-etched (SLA) and SLActive surface implants, there were no significant differences for insertion measurements, but for second measurements, SLActive was significantly higher (P = 0), and for the final measurement, there was no significant difference. It appears that repeated ISQ measurements of a specific implant have some diagnostic benefit, and the factors that affect implant stability during the healing period are presented.


Sign in / Sign up

Export Citation Format

Share Document