scholarly journals Classification and Prediction on the Effects of Nutritional Intake on Overweight/Obesity, Dyslipidemia, Hypertension and Type 2 Diabetes Mellitus Using Deep Learning Model: 4–7th Korea National Health and Nutrition Examination Survey

Author(s):  
Hyerim Kim ◽  
Dong Hoon Lim ◽  
Yoona Kim

Few studies have been conducted to classify and predict the influence of nutritional intake on overweight/obesity, dyslipidemia, hypertension and type 2 diabetes mellitus (T2DM) based on deep learning such as deep neural network (DNN). The present study aims to classify and predict associations between nutritional intake and risk of overweight/obesity, dyslipidemia, hypertension and T2DM by developing a DNN model, and to compare a DNN model with the most popular machine learning models such as logistic regression and decision tree. Subjects aged from 40 to 69 years in the 4–7th (from 2007 through 2018) Korea National Health and Nutrition Examination Survey (KNHANES) were included. Diagnostic criteria of dyslipidemia (n = 10,731), hypertension (n = 10,991), T2DM (n = 3889) and overweight/obesity (n = 10,980) were set as dependent variables. Nutritional intakes were set as independent variables. A DNN model comprising one input layer with 7 nodes, three hidden layers with 30 nodes, 12 nodes, 8 nodes in each layer and one output layer with one node were implemented in Python programming language using Keras with tensorflow backend. In DNN, binary cross-entropy loss function for binary classification was used with Adam optimizer. For avoiding overfitting, dropout was applied to each hidden layer. Structural equation modelling (SEM) was also performed to simultaneously estimate multivariate causal association between nutritional intake and overweight/obesity, dyslipidemia, hypertension and T2DM. The DNN model showed the higher prediction accuracy with 0.58654 for dyslipidemia, 0.79958 for hypertension, 0.80896 for T2DM and 0.62496 for overweight/obesity compared with two other machine leaning models with five-folds cross-validation. Prediction accuracy for dyslipidemia, hypertension, T2DM and overweight/obesity were 0.58448, 0.79929, 0.80818 and 0.62486, respectively, when analyzed by a logistic regression, also were 0.52148, 0.66773, 0.71587 and 0.54026, respectively, when analyzed by a decision tree. This study observed a DNN model with three hidden layers with 30 nodes, 12 nodes, 8 nodes in each layer had better prediction accuracy than two conventional machine learning models of a logistic regression and decision tree.

2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Sajad Yousefi

Introduction: Heart disease is often associated with conditions such as clogged arteries due to the sediment accumulation which causes chest pain and heart attack. Many people die due to the heart disease annually. Most countries have a shortage of cardiovascular specialists and thus, a significant percentage of misdiagnosis occurs. Hence, predicting this disease is a serious issue. Using machine learning models performed on multidimensional dataset, this article aims to find the most efficient and accurate machine learning models for disease prediction.Material and Methods: Several algorithms were utilized to predict heart disease among which Decision Tree, Random Forest and KNN supervised machine learning are highly mentioned. The algorithms are applied to the dataset taken from the UCI repository including 294 samples. The dataset includes heart disease features. To enhance the algorithm performance, these features are analyzed, the feature importance scores and cross validation are considered.Results: The algorithm performance is compared with each other, so that performance based on ROC curve and some criteria such as accuracy, precision, sensitivity and F1 score were evaluated for each model. As a result of evaluation, Accuracy, AUC ROC are 83% and 99% respectively for Decision Tree algorithm. Logistic Regression algorithm with accuracy and AUC ROC are 88% and 91% respectively has better performance than other algorithms. Therefore, these techniques can be useful for physicians to predict heart disease patients and prescribe them correctly.Conclusion: Machine learning technique can be used in medicine for analyzing the related data collections to a disease and its prediction. The area under the ROC curve and evaluating criteria related to a number of classifying algorithms of machine learning to evaluate heart disease and indeed, the prediction of heart disease is compared to determine the most appropriate classification. As a result of evaluation, better performance was observed in both Decision Tree and Logistic Regression models.


2021 ◽  
Author(s):  
Chang H Kim ◽  
Sadeer Al-Kindi ◽  
Yasir Tarabichi ◽  
Suril Gohel ◽  
Riddhi Vyas ◽  
...  

Background: The value of the electrocardiogram (ECG) for predicting long-term cardiovascular outcomes is not well defined. Machine learning methods are well suited for analysis of highly correlated data such as that from the ECG. Methods: Using demographic, clinical, and 12-lead ECG data from the Third National Health and Nutrition Examination Survey (NHANES III), machine learning models were trained to predict 10-year cardiovascular mortality in ambulatory U.S. adults. Predictive performance of each model was assessed using area under receiver operating characteristic curve (AUROC), area under precision-recall curve (AUPRC), sensitivity, and specificity. These were compared to the 2013 American College of Cardiology/American Heart Association Pooled Cohort Equations (PCE). Results: 7,067 study participants (mean age: 59.2 +/- 13.4 years, female: 52.5%, white: 73.9%, black: 23.3%) were included. At 10 years of follow up, 338 (4.8%) had died from cardiac causes. Compared to the PCE (AUROC: 0.668, AUPRC: 0.125, sensitivity: 0.492, specificity: 0.859), machine learning models only required demographic and ECG data to achieve comparable performance: logistic regression (AUROC: 0.754, AUPRC: 0.141, sensitivity: 0.747, specificity: 0.759), neural network (AUROC: 0.764, AUPRC: 0.149, sensitivity: 0.722, specificity: 0.787), and ensemble model (AUROC: 0.695, AUPRC: 0.166, sensitivity: 0.468, specificity: 0.912). Additional clinical data did not improve the predictive performance of machine learning models. In variable importance analysis, important ECG features clustered in inferior and lateral leads. Conclusions: Machine learning can be applied to demographic and ECG data to predict 10-year cardiovascular mortality in ambulatory adults, with potentially important implications for primary prevention.


Sign in / Sign up

Export Citation Format

Share Document