scholarly journals Water Quality Assessment and Evaluation of Human Health Risk in Mutangwi River, Limpopo Province, South Africa

Author(s):  
Rofhiwa T. Madilonga ◽  
Joshua N. Edokpayi ◽  
Elijah T. Volenzo ◽  
Olatunde S. Durowoju ◽  
John O. Odiyo

Freshwater supply is essential to life on Earth; however, land use activities such as mining and agriculture pose a significant danger to freshwater resources and the wellbeing of aquatic environments. This study temporarily assesses the water quality characteristics of Mutangwi River. Physicochemical parameters (pH, temperature, total dissolved solids (TDS), salinity, electrical conductivity (EC), and turbidity) were determined in situ using an Extech multimeter and turbidity meter. The concentration of the selected metals (Mg, Cr, Fe, Cd, Mn, Pb, Ca, and Na) were analysed using an Atomic Absorption Spectrophotometer. Membrane filtration method was used to analyse microbiological parameters (Escherichia coli and Enterococci). The physicochemical water quality parameters as well as basic anions (fluoride, phosphate, sulfate, nitrate, and chloride) determined complied with the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). Some of the trace metals (Mn, Ca, Fe, and Mg) were found below the guideline values, while others (Pb and Cd) exceeded the threshold limit. The counts for E. coli (814.5–2169 cfu/100 mL) and Enterococci (333–9396 cfu/100 mL) in the study did not comply with the regulatory guidelines. The water quality status using the water quality index (WQI) indicated that on the average, the water quality from Mutangwi River is poor (WQI > 100). The hazard quotient through ingestion exposure did not exceed the threshold limit of 1, for adults and children. This implies that there is no potential non-carcinogenic health risk from trace elements via ingestion of drinking water for children and adults. However, cancer risk for adults and children was computed in relation to Cd and Pb levels and exceeded the threshold limit 10−4, indicating a possible carcinogenic risk. Water from the river should be adequately treated prior to domestic and agricultural use.

2021 ◽  
Author(s):  
Ajaykumar Kadam ◽  
Vasant Wagh ◽  
James Jacobs ◽  
Sanjay Patil ◽  
Namdev Pawar ◽  
...  

Abstract Groundwater occurrence in hard rock basaltic terrains is restricted to weathered and fractured zones and pockets wherein slow movement of groundwater, prolonged rock-water interactions and higher residence time alter the natural chemistry of groundwater raising water quality issues. The qualitative geochemical analysis, contamination levels and human health risk assessment (HHRA) of groundwater is an integral step in groundwater management in the Deccan Plateau basalt flow region of India. Representative groundwater samples (68) collected from the Shivganga River basin area during pre-monsoon (PRM) and post-monsoon (POM) seasons in 2015 were analyzed for major cations and anions. According to World Health Organization (WHO) EC, total dissolved solids, hardness, bicarbonate, calcium and magnesium surpassed the desirable limit. Boron and fluoride content exceeded the prescribed desirable limit of the WHO. The pollution and drinking suitability were assessed by computing pollution index of groundwater (PIG), groundwater quality index (GWQI), and HHRA particularly for boron and fluoride toxicity. PIG values inferred that about 6% of groundwater has moderate, 24% has low, and 70% has insignificant pollution in the PRM season; while, only 1 sample (3 %) showed high pollution, 6% showed low, and 91% showed insignificant pollution in the POM season. GWQI results indicate that 27% and 15% samples are within the poor category, and only 15% and 18% of the samples fall within the excellent water quality category in the PRM and the POM season, respectively. Total hazard index (THI) revealed that 88% of children, 59% of adults, and about 38% of infants are exposed to non-carcinogenic risk, as THI values (> 1) were noted for the PRM season; while, 62% of children, 47% of adults and 24% of infants, are vulnerable to non-carcinogenic health hazard during the POM period.


2015 ◽  
Vol 14 (3) ◽  
pp. 471-488 ◽  
Author(s):  
Simge Varol ◽  
Aysen Davraz

Isparta city center is selected as a work area in this study because the public believes that the tap water is dirty and harmful. In this study, the city's drinking water in the distribution system and other spring waters which are used as drinking water in this region were investigated from the point of water quality and health risk assessment. Water samples were collected from major drinking water springs, tap waters, treatment plants and dam pond in the Isparta province center. Ca-Mg-HCO3, Mg-Ca-HCO3, Ca-Na-HCO3, Ca-HCO3, Ca-HCO3-SO4 and Ca-Mg-HCO3-SO4 are dominant water types. When compared to drinking water guidelines established by World Health Organization and Turkey, much greater attention should be paid to As, Br, Fe, F, NH4, PO4 through varied chemicals above the critical values. The increases of As, Fe, F, NH4 and PO4 are related to water–rock interaction. In tap waters, the increases of As and Fe are due to corrosion of pipes in drinking water distribution systems. The major toxic and carcinogenic chemicals within drinking water are As and Br for both tap water and spring water. Also, F is the non-carcinogenic chemical for only spring waters in the study area.


2021 ◽  
Author(s):  
Sakram Gugulothu ◽  
N. Subbarao ◽  
Rashmirekha Das ◽  
Laxman Duvva ◽  
Ratnakar Dhakate

Abstract Evaluation of chemical quality of groundwater and associated health hazards is a prerequisite for taking remedial measures elsewhere. A rural region of South India was, thus, chosen for the present study to assess the total quality of groundwater and also to decipher the human health risk zones with respect to adults and children due to the groundwater pollution with nitrate (NO-3) and fluoride (F-) ions. Groundwater samples collected from the study region were determined for various chemical parameters. According to the total water quality index, groundwater quality is suitable for drinking purposes. However, the NO-3 (0.4 to 585.20 mg/L) and F-(0.22 to 5.41 mg/L) ions exceed the drinking water quality limits of 45 mg/L and 1.5 mg/L in 34% and 25% of the groundwater samples, respectively. Nitrate fertilizers appeared as the chief source of NO-3, and the fluoride minerals as the main source of F- in the groundwater body, which are further supported by principal component analysis. Total human health hazard index (THHHI) was observed to be higher than its tolerable limit of 1.0 in 63% and 73% of the groundwater samples in respect of NO-3 and F- of adults and children, respectively. The intensity of human health risk zones of THHHI (>1.0) was 1.37 times higher in children (5.69) than in children (4.15), which cover an area of 71.75% and 66.73%, respectively. Thus, the effective strategic measures were recommended for the protection of groundwater resources from pollution and also for improving the human health conditions.


Author(s):  
Reza Aghlmand ◽  
Saeed Rasi Nezami ◽  
Ali Abbasi

In recent years, in addition to water resources’ quantity, their quality has also received much attention. In this study, the quality of the urban water distribution network in northwestern Iran was evaluated using the water quality index (WQI) method. Then, some important trace elements were investigated, and finally, the health risk assessment was evaluated for both carcinogenic elements (Ni, Cd, Cr, Pb, and As) and non-carcinogenic elements (Ca, Mg, Na, K, F, NO3, and Cu) using carcinogenic risk (CR) and hazard quotient (HQ), respectively. In the present study, the WQI was calculated based on both World Health Organization (WHO) and Iranian drinking water standards. Comparing the results of these standards revealed that the WQI based on the Iranian standard was slightly higher. Regarding the calculated WQI for the study region, the status of water quality for drinking consumption is in the good water quality class (25 < WQI < 50). It was observed that Cu and Cd have the highest and lowest concentrations in all sampling points, respectively. Hazard Index (HI) results showed that the non-carcinogenic substances studied had a low risk for both adults and children (<1.0). However, the CR results showed that Ni, Cd, and As were above the desired level for both children and adults. The results of this study can be applied for efficient water management and human health protection programs in the study area.


2013 ◽  
Vol 60 ◽  
pp. 93-101 ◽  
Author(s):  
Sardar Khan ◽  
Maria Shahnaz ◽  
Noor Jehan ◽  
Shafiqur Rehman ◽  
M. Tahir Shah ◽  
...  

1970 ◽  
Vol 24 (2) ◽  
pp. 163-165 ◽  
Author(s):  
Abdul Hussain Shar ◽  
Yasmeen F Kazi ◽  
Miandad Zardari ◽  
Irshad Hussain Soomro

Total coliform (TC) and faecal coliform (FC) bacteria were analyzed in drinking water of Khairpur city. Ninty samples were collected from main reservoir (source), distribution line and consumer taps. pH and residual chlorine of water samples were also determined. For bacteriological analysis inductively membrane filtration (MF) method was used for total coliform (TC) as well as faecal (FC) coliform bacteria. All samples were found contaminated with total coliform (TC) and faecal coliform (FC) and the counts were higher than the maximum microbial contaminant level (MMCL) established by World Health Organization (WHO). It was observed that pH was within the limits of WHO standard (6.5-8.5). The residual chlorine was not detected in any sample of drinking water. Bacteriologically the water quality of the drinking water is unsatisfactory.Keywords: Coliform, Escherichia coli, Water quality, Contamination, SanitationDOI: http://dx.doi.org/10.3329/bjm.v24i2.1266


Sign in / Sign up

Export Citation Format

Share Document