scholarly journals Detection of COVID-19 in Chest X-ray Images: A Big Data Enabled Deep Learning Approach

Author(s):  
Mazhar Javed Awan ◽  
Muhammad Haseeb Bilal ◽  
Awais Yasin ◽  
Haitham Nobanee ◽  
Nabeel Sabir Khan ◽  
...  

Coronavirus disease (COVID-19) spreads from one person to another rapidly. A recently discovered coronavirus causes it. COVID-19 has proven to be challenging to detect and cure at an early stage all over the world. Patients showing symptoms of COVID-19 are resulting in hospitals becoming overcrowded, which is becoming a significant challenge. Deep learning’s contribution to big data medical research has been enormously beneficial, offering new avenues and possibilities for illness diagnosis techniques. To counteract the COVID-19 outbreak, researchers must create a classifier distinguishing between positive and negative corona-positive X-ray pictures. In this paper, the Apache Spark system has been utilized as an extensive data framework and applied a Deep Transfer Learning (DTL) method using Convolutional Neural Network (CNN) three architectures —InceptionV3, ResNet50, and VGG19—on COVID-19 chest X-ray images. The three models are evaluated in two classes, COVID-19 and normal X-ray images, with 100 percent accuracy. But in COVID/Normal/pneumonia, detection accuracy was 97 percent for the inceptionV3 model, 98.55 percent for the ResNet50 Model, and 98.55 percent for the VGG19 model, respectively.

Measurement ◽  
2021 ◽  
pp. 109953
Author(s):  
Adhiyaman Manickam ◽  
Jianmin Jiang ◽  
Yu Zhou ◽  
Abhinav Sagar ◽  
Rajkumar Soundrapandiyan ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 31
Author(s):  
Joaquim de Moura ◽  
Lucía Ramos ◽  
Plácido L. Vidal ◽  
Jorge Novo ◽  
Marcos Ortega

The new coronavirus (COVID-19) is a disease that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). On 11 March 2020, the coronavirus outbreak has been labelled a global pandemic by the World Health Organization. In this context, chest X-ray imaging has become a remarkably powerful tool for the identification of patients with COVID-19 infections at an early stage when clinical symptoms may be unspecific or sparse. In this work, we propose a complete analysis of separability of COVID-19 and pneumonia in chest X-ray images by means of Convolutional Neural Networks. Satisfactory results were obtained that demonstrated the suitability of the proposed system, improving the efficiency of the medical screening process in the healthcare systems.


2021 ◽  
pp. 20201263
Author(s):  
Mohammad Salehi ◽  
Reza Mohammadi ◽  
Hamed Ghaffari ◽  
Nahid Sadighi ◽  
Reza Reiazi

Objective: Pneumonia is a lung infection and causes the inflammation of the small air sacs (Alveoli) in one or both lungs. Proper and faster diagnosis of pneumonia at an early stage is imperative for optimal patient care. Currently, chest X-ray is considered as the best imaging modality for diagnosing pneumonia. However, the interpretation of chest X-ray images is challenging. To this end, we aimed to use an automated convolutional neural network-based transfer-learning approach to detect pneumonia in paediatric chest radiographs. Methods: Herein, an automated convolutional neural network-based transfer-learning approach using four different pre-trained models (i.e. VGG19, DenseNet121, Xception, and ResNet50) was applied to detect pneumonia in children (1–5 years) chest X-ray images. The performance of different proposed models for testing data set was evaluated using five performances metrics, including accuracy, sensitivity/recall, Precision, area under curve, and F1 score. Results: All proposed models provide accuracy greater than 83.0% for binary classification. The pre-trained DenseNet121 model provides the highest classification performance of automated pneumonia classification with 86.8% accuracy, followed by Xception model with an accuracy of 86.0%. The sensitivity of the proposed models was greater than 91.0%. The Xception and DenseNet121 models achieve the highest classification performance with F1-score greater than 89.0%. The plotted area under curve of receiver operating characteristics of VGG19, Xception, ResNet50, and DenseNet121 models are 0.78, 0.81, 0.81, and 0.86, respectively. Conclusion: Our data showed that the proposed models achieve a high accuracy for binary classification. Transfer learning was used to accelerate training of the proposed models and resolve the problem associated with insufficient data. We hope that these proposed models can help radiologists for a quick diagnosis of pneumonia at radiology departments. Moreover, our proposed models may be useful to detect other chest-related diseases such as novel Coronavirus 2019. Advances in knowledge: Herein, we used transfer learning as a machine learning approach to accelerate training of the proposed models and resolve the problem associated with insufficient data. Our proposed models achieved accuracy greater than 83.0% for binary classification.


Author(s):  
Prateek Sarangi ◽  
Pradosh Priyadarshan ◽  
Swagatika Mishra ◽  
Adyasha Rath ◽  
Ganapati Panda

2015 ◽  
Vol 19 (2) ◽  
pp. 159-162 ◽  
Author(s):  
Rachel Asiniwasis ◽  
Maha T. Dutil ◽  
Scott Walsh

Background/Objectives The clinical and histopathologic findings of a rare simultaneous occurrence of papulonecrotic tuberculid and nodular tuberclid in a patient with active but asymptomatic pulmonary tuberculosis are presented. Papulonecrotic tuberculid was observed at a very early stage, presenting as molluscum-like lesions. This has been described once in the literature. This was observed in conjunction with lesions compatible with the rare clinicopathologic variant of nodular tuberculid. Critical to the diagnosis of active pulmonary tuberculosis was the use of induced sputum testing, which confirmed the diagnosis despite the lack of a cough and a chest x-ray negative for active tuberculosis. Methods/Results A 40-year-old male presented with a 2-week history of fever and a skin eruption consisting of molluscum-like papules on the ears, arms, and abdomen and nodules on his legs. Biopsies from both lesions were consistent with papulonecrotic and nodular tuberculid, respectively. Despite the lack of any respiratory symptoms, induced sputum grew Mycobacterium tuberculosis, and the lesions resolved on antituberculous therapy. Conclusions and Relevance Tuberculids are rare in Western countries but must be considered in the differential diagnosis of eruptions in patients from endemic countries. An active tuberculous focus must be sought out.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


2021 ◽  
pp. 1-14
Author(s):  
S. Rajesh Kannan ◽  
J. Sivakumar ◽  
P. Ezhilarasi

Since the infectious disease occurrence rate in the human community is gradually rising due to varied reasons, appropriate diagnosis and treatments are essential to control its spread. The recently discovered COVID-19 is one of the contagious diseases, which infected numerous people globally. This contagious disease is arrested by several diagnoses and handling actions. Medical image-supported diagnosis of COVID-19 infection is an approved clinical practice. This research aims to develop a new Deep Learning Method (DLM) to detect the COVID-19 infection using the chest X-ray. The proposed work implemented two methods namely, detection of COVID-19 infection using (i) a Firefly Algorithm (FA) optimized deep-features and (ii) the combined deep and machine features optimized with FA. In this work, a 5-fold cross-validation method is engaged to train and test detection methods. The performance of this system is analyzed individually resulting in the confirmation that the deep feature-based technique helps to achieve a detection accuracy of >  92% with SVM-RBF classifier and combining deep and machine features achieves >  96% accuracy with Fine KNN classifier. In the future, this technique may have potential to play a vital role in testing and validating the X-ray images collected from patients suffering from the infection diseases.


Sign in / Sign up

Export Citation Format

Share Document