scholarly journals An Effective Convolutional Neural Network Model for the Early Detection of COVID-19 Using Chest X-ray Images

2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.

2021 ◽  
Vol 2071 (1) ◽  
pp. 012001
Author(s):  
J Ureta ◽  
A Shrestha

Abstract Tuberculosis(TB) is one of the top 10 causes of death worldwide, and drug-resistant TB is a major public health concern especially in resource-constrained countries. In such countries, molecular diagnosis of drug-resistant TB remains a challenge; and imaging tools such as X-rays, which are cheaply and widely available, can be a valuable supplemental resource for early detection and screening. This study uses a specialized convolutional neural network to perform binary classification of chest X-ray images to classify drug-resistant and drug-sensitive TB. The models were trained and validated using the TBPortals dataset which contains 2,973 labeled X-ray images from TB patients. The classifiers were able to identify the presence or absence of drug-resistant Tuberculosis with an AUROC between 0.66–0.67, which is an improvement over previous attempts using deep learning networks.


Author(s):  
R. Rohith ◽  
S.P.Syed Ibrahim

Tuberculosis is a life-threatening disease that mainly affects underdeveloped as well as developing nations. While lethal it is often resistive to antibiotics and the safest way to treat a patient is to detect the disease's presence as soon as possible. Various techniques have been developed to diagnose tuberculosis and radiography of the chest is one of such methods that works well for over a decade.. Though an effective method still the success depends on the medical officer who examines the chest X-rays. Thus ,this paper proposes an approach for detecting X-ray abnormalities using deep learning. The systems output is assessed on two open Montgomery and Shenz en chest X-ray datasets and accuracy of 84 percent is achieved.


Tuberculosis is one of the single infectious diseases which is one among the top ten causes of deaths. Eradication is only possible by timely diagnosis of disease and treatment at its early stage. But unfortunately, timely detection is lagging due to many reasons. In this angle we present a novel scheme for automatic detection of tuberculosis from chest X-ray images. The proposed method accurately detects the malady by performing graph cut segmentation followed by classification using convolutional neural network. The classifier facilitates the chest X-rays to be classified as normal or abnormal. Simulation results show that the accuracy of 94%, sensitivity of 96% and specificity of 84% obtained from the proposed system are comparable and even better than the existing reported methods.


2021 ◽  
pp. 20201263
Author(s):  
Mohammad Salehi ◽  
Reza Mohammadi ◽  
Hamed Ghaffari ◽  
Nahid Sadighi ◽  
Reza Reiazi

Objective: Pneumonia is a lung infection and causes the inflammation of the small air sacs (Alveoli) in one or both lungs. Proper and faster diagnosis of pneumonia at an early stage is imperative for optimal patient care. Currently, chest X-ray is considered as the best imaging modality for diagnosing pneumonia. However, the interpretation of chest X-ray images is challenging. To this end, we aimed to use an automated convolutional neural network-based transfer-learning approach to detect pneumonia in paediatric chest radiographs. Methods: Herein, an automated convolutional neural network-based transfer-learning approach using four different pre-trained models (i.e. VGG19, DenseNet121, Xception, and ResNet50) was applied to detect pneumonia in children (1–5 years) chest X-ray images. The performance of different proposed models for testing data set was evaluated using five performances metrics, including accuracy, sensitivity/recall, Precision, area under curve, and F1 score. Results: All proposed models provide accuracy greater than 83.0% for binary classification. The pre-trained DenseNet121 model provides the highest classification performance of automated pneumonia classification with 86.8% accuracy, followed by Xception model with an accuracy of 86.0%. The sensitivity of the proposed models was greater than 91.0%. The Xception and DenseNet121 models achieve the highest classification performance with F1-score greater than 89.0%. The plotted area under curve of receiver operating characteristics of VGG19, Xception, ResNet50, and DenseNet121 models are 0.78, 0.81, 0.81, and 0.86, respectively. Conclusion: Our data showed that the proposed models achieve a high accuracy for binary classification. Transfer learning was used to accelerate training of the proposed models and resolve the problem associated with insufficient data. We hope that these proposed models can help radiologists for a quick diagnosis of pneumonia at radiology departments. Moreover, our proposed models may be useful to detect other chest-related diseases such as novel Coronavirus 2019. Advances in knowledge: Herein, we used transfer learning as a machine learning approach to accelerate training of the proposed models and resolve the problem associated with insufficient data. Our proposed models achieved accuracy greater than 83.0% for binary classification.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Vina Ayumi ◽  
Ida Nurhaida

Deteksi dini terhadap adanya indikasi pasien dengan gejala COVID-19 perlu dilakukan untuk mengurangi penyebaran virus. Salah satu cara yang dapat dilakukan untuk mendeteksi virus COVID-19 adalah dengan cara mempelajari citra chest x-ray pasien dengan gejala Covid-19. Citra chest x-ray dianggap mampu menggambarkan kondisi paru-paru pasien COVID-19 sebagai alat bantu untuk diagnosa klinis. Penelitian ini mengusulkan pendekatan deep learning berbasis convolutional neural network (CNN) untuk klasifikasi gejala COVID-19 melalui citra chest X-Ray. Evaluasi performa metode yang diusulkan akan menggunakan perhitungan accuracy, precision, recall, f1-score, dan cohens kappa. Penelitian ini menggunakan model CNN dengan 2 lapis layer convolusi dan maxpoling serta fully-connected layer untuk output. Parameter-parameter yang digunakan diantaranya batch_size = 32, epoch = 50, learning_rate = 0.001, dengan optimizer yaitu Adam. Nilai akurasi validasi (val_acc) terbaik diperoleh pada epoch ke-49 dengan nilai 0.9606, nilai loss validasi (val_loss) 0.1471, akurasi training (acc) 0.9405, dan loss training (loss) 0.2558.


COVID ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 403-415
Author(s):  
Abeer Badawi ◽  
Khalid Elgazzar

Coronavirus disease (COVID-19) is an illness caused by a novel coronavirus family. One of the practical examinations for COVID-19 is chest radiography. COVID-19 infected patients show abnormalities in chest X-ray images. However, examining the chest X-rays requires a specialist with high experience. Hence, using deep learning techniques in detecting abnormalities in the X-ray images is presented commonly as a potential solution to help diagnose the disease. Numerous research has been reported on COVID-19 chest X-ray classification, but most of the previous studies have been conducted on a small set of COVID-19 X-ray images, which created an imbalanced dataset and affected the performance of the deep learning models. In this paper, we propose several image processing techniques to augment COVID-19 X-ray images to generate a large and diverse dataset to boost the performance of deep learning algorithms in detecting the virus from chest X-rays. We also propose innovative and robust deep learning models, based on DenseNet201, VGG16, and VGG19, to detect COVID-19 from a large set of chest X-ray images. A performance evaluation shows that the proposed models outperform all existing techniques to date. Our models achieved 99.62% on the binary classification and 95.48% on the multi-class classification. Based on these findings, we provide a pathway for researchers to develop enhanced models with a balanced dataset that includes the highest available COVID-19 chest X-ray images. This work is of high interest to healthcare providers, as it helps to better diagnose COVID-19 from chest X-rays in less time with higher accuracy.


AI ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 418-435
Author(s):  
Khandaker Haque ◽  
Ahmed Abdelgawad

Deep Learning has improved multi-fold in recent years and it has been playing a great role in image classification which also includes medical imaging. Convolutional Neural Networks (CNNs) have been performing well in detecting many diseases including coronary artery disease, malaria, Alzheimer’s disease, different dental diseases, and Parkinson’s disease. Like other cases, CNN has a substantial prospect in detecting COVID-19 patients with medical images like chest X-rays and CTs. Coronavirus or COVID-19 has been declared a global pandemic by the World Health Organization (WHO). As of 8 August 2020, the total COVID-19 confirmed cases are 19.18 M and deaths are 0.716 M worldwide. Detecting Coronavirus positive patients is very important in preventing the spread of this virus. On this conquest, a CNN model is proposed to detect COVID-19 patients from chest X-ray images. Two more CNN models with different number of convolution layers and three other models based on pretrained ResNet50, VGG-16 and VGG-19 are evaluated with comparative analytical analysis. All six models are trained and validated with Dataset 1 and Dataset 2. Dataset 1 has 201 normal and 201 COVID-19 chest X-rays whereas Dataset 2 is comparatively larger with 659 normal and 295 COVID-19 chest X-ray images. The proposed model performs with an accuracy of 98.3% and a precision of 96.72% with Dataset 2. This model gives the Receiver Operating Characteristic (ROC) curve area of 0.983 and F1-score of 98.3 with Dataset 2. Moreover, this work shows a comparative analysis of how change in convolutional layers and increase in dataset affect classifying performances.


Author(s):  
V. N. Manjunath Aradhya ◽  
Mufti Mahmud ◽  
D. S. Guru ◽  
Basant Agarwal ◽  
M. Shamim Kaiser

AbstractCoronavirus disease (COVID-19) has infected over more than 28.3 million people around the globe and killed 913K people worldwide as on 11 September 2020. With this pandemic, to combat the spreading of COVID-19, effective testing methodologies and immediate medical treatments are much required. Chest X-rays are the widely available modalities for immediate diagnosis of COVID-19. Hence, automation of detection of COVID-19 from chest X-ray images using machine learning approaches is of greater demand. A model for detecting COVID-19 from chest X-ray images is proposed in this paper. A novel concept of cluster-based one-shot learning is introduced in this work. The introduced concept has an advantage of learning from a few samples against learning from many samples in case of deep leaning architectures. The proposed model is a multi-class classification model as it classifies images of four classes, viz., pneumonia bacterial, pneumonia virus, normal, and COVID-19. The proposed model is based on ensemble of Generalized Regression Neural Network (GRNN) and Probabilistic Neural Network (PNN) classifiers at decision level. The effectiveness of the proposed model has been demonstrated through extensive experimentation on a publicly available dataset consisting of 306 images. The proposed cluster-based one-shot learning has been found to be more effective on GRNN and PNN ensembled model to distinguish COVID-19 images from that of the other three classes. It has also been experimentally observed that the model has a superior performance over contemporary deep learning architectures. The concept of one-shot cluster-based learning is being first of its kind in literature, expected to open up several new dimensions in the field of machine learning which require further researching for various applications.


Author(s):  
Ahmed Mohamed ◽  
Ahmed Abdelhady

The Coronavirus disease outbreak result in many people to have severe respira- tory problems and it was recognized as a global health threat. Since the virus is targeting the lungs in the human body initially, chest x-ray imaging features were considered to be useful for the detection of the infection in the early stage. In this study, the chest x-ray data of 130 infected patients from an open data source that referenced Cohen J. Morrison P. Dao L., 2020 was used to build a CNN( Convolutional Neural-Network) model for the early detection of the disease. The model was trained with both infected and not-infected peoples’ chest x-ray images with 100 epochs which led to 0.98 accuracy finally. In order to use this model as a professional diagnosis element, it is highly recommended it be improved with more images and the model can be restructured to get a better accuracy.


Sign in / Sign up

Export Citation Format

Share Document