scholarly journals The Utilization of Alkali-Activated Lead–Zinc Smelting Slag for Chromite Ore Processing Residue Solidification/Stabilization

Author(s):  
Lin Yu ◽  
Lu Fang ◽  
Pengpeng Zhang ◽  
Shujie Zhao ◽  
Binquan Jiao ◽  
...  

Lead–zinc smelting slag (LZSS) is regarded as a hazardous waste containing heavy metals that poses a significant threat to the environment. LZSS is rich in aluminosilicate, which has the potential to prepare alkali-activated materials and solidify hazardous waste, realizing hazardous waste cotreatment. In this study, the experiment included two parts; i.e., the preparation of alkali-activated LZSS (pure smelting slag) and chromite ore processing residue (COPR) solidification/stabilization. Single-factor and orthogonal experiments were carried out that aimed to explore the effects of various parameters (alkali solid content, water glass modulus, liquid–solid ratio, and initial curing temperature) for alkali-activated LZSS. Additionally, compressive strength and leaching toxicity were the indexes used to evaluate the performance of the solidified bodies containing COPR. As a result, the highest compressive strength of alkali-activated LZSS reached 84.49 MPa, and when 40% COPR was added, the strength decreased to 1.42 MPa. However, the leaching concentrations of Zn and Cr from all the solidified bodies were far below the critical limits (US EPA Method 1311 and China GB5085.3-2007). Heavy-metal ions in LZSS and COPR were immobilized successfully by chemical and physical means, which was detected by analyses including environmental scanning electron microscopy with energy-dispersive spectrometry, Fourier transform infrared spectrometry, and X-ray diffraction.

Author(s):  
Yanhong Mao ◽  
Faheem Muhammad ◽  
Lin Yu ◽  
Ming Xia ◽  
Xiao Huang ◽  
...  

The proper disposal of Lead-Zinc Smelting Slag (LZSS) having toxic metals is a great challenge for a sustainable environment. In the present study, this challenge was overcome by its solidification/stabilization through alkali-activated cementitious material i.e., Blast Furnace Slag (BFS). The different parameters (water glass modulus, liquid-solid ratio and curing temperature) regarding strength development were optimized through single factor and orthogonal experiments. The LZSS was solidified in samples that had the highest compressive strength (after factor optimization) synthesized with (AASB) and without (AAS) bentonite as an adsorbent material. The results indicated that the highest compressive strength (AAS = 92.89MPa and AASB = 94.57MPa) was observed in samples which were prepared by using a water glass modulus of 1.4, liquid-solid ratio of 0.26 and a curing temperature of 25 °C. The leaching concentrations of Pb and Zn in both methods (sulfuric and nitric acid, and TCLP) had not exceeded the toxicity limits up to 70% addition of LZSS due to a higher compressive strength (>60 MPa) of AAS and AASB samples. While, leaching concentrations in AASB samples were lower than AAS. Conclusively, it was found that the solidification effect depends upon the composition of binder material, type of leaching extractant, nature and concentration of heavy metals in waste. The XRD, FTIR and SEM analyses confirmed that the solidification mechanism was carried out by both physical encapsulation and chemical fixation (dissolved into a crystal structure). Additionally, bentonite as an auxiliary additive significantly improved the solidification/stabilization of LZSS in AASB by enhancing the chemical adsorption capacity of heavy metals.


2020 ◽  
Vol 249 ◽  
pp. 118756 ◽  
Author(s):  
Pengpeng Zhang ◽  
Faheem Muhammad ◽  
Lin Yu ◽  
Ming Xia ◽  
Huirong Lin ◽  
...  

Chemosphere ◽  
2017 ◽  
Vol 168 ◽  
pp. 300-308 ◽  
Author(s):  
Xiao Huang ◽  
RanLiang Zhuang ◽  
Faheem Muhammad ◽  
Lin Yu ◽  
YanChyuan Shiau ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Lijie Guo ◽  
Wenchen Li ◽  
Xiaocong Yang ◽  
Wenyuan Xu

This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS) on cemented tailing backfill (CTB) that contains lead-zinc smelting slag. CTB and cemented paste (CP) containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis and thermal gravity analysis) were performed on the studied CP samples, whereas the electrical conductivity of CTB was monitored. The results reveal that SS has a significant positive effect on cementitious activity of binder mixed by cement and lead-zinc smelting slag. This activation leads to the acceleration of binder hydration process, the formation of more cement hydration products in the CTBs, and the refinement of their pore structure, which is favorable for the strength development of CTB.


2016 ◽  
Vol 42 (8) ◽  
pp. 9538-9549 ◽  
Author(s):  
Xiao Huang ◽  
Tao Huang ◽  
Shan Li ◽  
Faheem Muhammad ◽  
Guojing Xu ◽  
...  

2020 ◽  
Vol 10 (27) ◽  
pp. 200907
Author(s):  
Alka Banchhor ◽  
Madhurima Pandey ◽  
Meena Chakraborty ◽  
Piyush Kant Pandey

Background. Hexavalent chromium-containing waste from chromite ore processing is a major environmental health hazard due to its high toxicity. There have been instances of improper and unsafe disposal of this waste, leading to environmental health hazards. Objectives. The objective of the present study was to identify the cause of yellow colored water discharge and reported health issues in nearby residents and cattle. In addition, it investigated the improper disposal of chromite ore processing residue (COPR), a hazardous waste, in an abandoned quarry in stromatolitic-limestone terrain in central-east India. Methods. Standard methods of analysis of water and wastewater were used for the analyses of variables, including hexavalent chromium (Cr(VI)), pH, sulfate (SO42−), chlorine (Cl−), total hardness, calcium (Ca(II)), magnesium (Mg(II)), alkalinity and sodium (Na(I)) with proper sampling, quality assurance, and quality control protocols. Onsite Cr(VI) was analyzed using a chromium testing kit, and in the laboratory by atomic absorption spectrophotometry. Results. Large-scale contamination of surface and groundwater was noted due to the migration of hexavalent chromium-contaminated yellow colored leachate. High levels of hexavalent chromium were noted in the samples. The maximum Cr(VI) concentration observed was 1050 mg/L in leachate, 22 mg/L in surface water and 0.26 mg/L in the groundwater sample. Acute health effects were noted in cattle and by residents who consumed the highly contaminated water. Conclusions. A large volume of discharge of hexavalent chromium contamination from the COPR landfill was found, indicating the absence of containment features in the design (double high-density polyethylene liners, clay, leachate collection). Disposal of COPR in an abandoned limestone mine is inadvisable. The highly fractured stromatolitic-limestone environment at the study site was found to offer almost no resistance to the mobilization of Cr(VI) due to the absence of organic or eukaryotic deposition in the stromatolitic environment. It was also noted that the drainage pattern of the area facilitates a possible translocation of contaminated discharge to the nearby river system. Nearby residents were unaware of the adverse impacts of the contaminated leachates and were using the contaminated water for bathing, washing, etc. Applicable Indian governmental regulations regarding the construction of hazardous waste landfills were found to be insufficient with respect to the use of inactive limestone mines as landfill sites. Competing Interests. The authors declare no competing financial interests.


2019 ◽  
Vol 209 ◽  
pp. 1206-1215 ◽  
Author(s):  
Ming Xia ◽  
Faheem Muhammad ◽  
Linghao Zeng ◽  
Shan Li ◽  
Xiao Huang ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Dan Zhang ◽  
Shiliu Shi ◽  
Chengbiao Wang ◽  
Xiaocong Yang ◽  
Lijie Guo ◽  
...  

The composite cementitious materials were prepared with lead-zinc tailings, lead-zinc smelting slag, and cement clinker. The effect of material ratio on the mechanical properties, the phase analysis, and microstructures were investigated. The effect of the pH and stripping time on the leaching amount of lead ion was discussed. The results show that the additive amount of the tailings should be minimized for the cementitious materials meeting the strength requirements, controlled within 10%. The leaching amount of cementitious materials remains low in a larger range of pH, which can effectively reduce the leaching of heavy metal lead. The leaching kinetics of lead ions in the three kinds of samples could be better described by the pseudo-second-model.


Sign in / Sign up

Export Citation Format

Share Document