zinc smelting slag
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 3)

Author(s):  
Lin Yu ◽  
Lu Fang ◽  
Pengpeng Zhang ◽  
Shujie Zhao ◽  
Binquan Jiao ◽  
...  

Lead–zinc smelting slag (LZSS) is regarded as a hazardous waste containing heavy metals that poses a significant threat to the environment. LZSS is rich in aluminosilicate, which has the potential to prepare alkali-activated materials and solidify hazardous waste, realizing hazardous waste cotreatment. In this study, the experiment included two parts; i.e., the preparation of alkali-activated LZSS (pure smelting slag) and chromite ore processing residue (COPR) solidification/stabilization. Single-factor and orthogonal experiments were carried out that aimed to explore the effects of various parameters (alkali solid content, water glass modulus, liquid–solid ratio, and initial curing temperature) for alkali-activated LZSS. Additionally, compressive strength and leaching toxicity were the indexes used to evaluate the performance of the solidified bodies containing COPR. As a result, the highest compressive strength of alkali-activated LZSS reached 84.49 MPa, and when 40% COPR was added, the strength decreased to 1.42 MPa. However, the leaching concentrations of Zn and Cr from all the solidified bodies were far below the critical limits (US EPA Method 1311 and China GB5085.3-2007). Heavy-metal ions in LZSS and COPR were immobilized successfully by chemical and physical means, which was detected by analyses including environmental scanning electron microscopy with energy-dispersive spectrometry, Fourier transform infrared spectrometry, and X-ray diffraction.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10825
Author(s):  
Yishu Peng ◽  
Ruidong Yang ◽  
Tao Jin ◽  
Jun Chen ◽  
Jian Zhang

Background There are contaminated by potentially toxic metal(loid)s (PTMs) that the surface soil and the weathering profiles around the indigenous zinc smelting slag piles or smelters in the smelting area. However, few systematic studies are currently focusing on the PTM distribution and migration among the slag and its bottom weathering profile. Methods This research determined the concentrations of PTMs and pH values. And we analyzed PTM distribution in the two weathering profiles (slag-covered and slag-absent) with a small horizontal distance in the clastic rock region in the smelting area. Results The soil As and Pb contents, respectively, within the 30 and 50 cm depth in the slag-covered section were higher than those in the slag-absent profile. All soil Cd and Zn contents of the slag-covered core were significantly higher than those in the slag-absent weathering section. Conclusions Compared with the slag-absent weathering section, some PTMs (i.e., As, Cd, Pb and Zn) in the bottom weathering profile were polluted by these elements in the covered slag in the clastic rock region, and their depths were influenced by the slag to varying degrees. Additionally, with time, some PTMs (especially Cd and Zn) of the slag might finally contaminate the groundwater by leaching and infiltration through its bottom weathering profile in the clastic rock region.


2020 ◽  
Vol 249 ◽  
pp. 118756 ◽  
Author(s):  
Pengpeng Zhang ◽  
Faheem Muhammad ◽  
Lin Yu ◽  
Ming Xia ◽  
Huirong Lin ◽  
...  

Author(s):  
Yanhong Mao ◽  
Faheem Muhammad ◽  
Lin Yu ◽  
Ming Xia ◽  
Xiao Huang ◽  
...  

The proper disposal of Lead-Zinc Smelting Slag (LZSS) having toxic metals is a great challenge for a sustainable environment. In the present study, this challenge was overcome by its solidification/stabilization through alkali-activated cementitious material i.e., Blast Furnace Slag (BFS). The different parameters (water glass modulus, liquid-solid ratio and curing temperature) regarding strength development were optimized through single factor and orthogonal experiments. The LZSS was solidified in samples that had the highest compressive strength (after factor optimization) synthesized with (AASB) and without (AAS) bentonite as an adsorbent material. The results indicated that the highest compressive strength (AAS = 92.89MPa and AASB = 94.57MPa) was observed in samples which were prepared by using a water glass modulus of 1.4, liquid-solid ratio of 0.26 and a curing temperature of 25 °C. The leaching concentrations of Pb and Zn in both methods (sulfuric and nitric acid, and TCLP) had not exceeded the toxicity limits up to 70% addition of LZSS due to a higher compressive strength (>60 MPa) of AAS and AASB samples. While, leaching concentrations in AASB samples were lower than AAS. Conclusively, it was found that the solidification effect depends upon the composition of binder material, type of leaching extractant, nature and concentration of heavy metals in waste. The XRD, FTIR and SEM analyses confirmed that the solidification mechanism was carried out by both physical encapsulation and chemical fixation (dissolved into a crystal structure). Additionally, bentonite as an auxiliary additive significantly improved the solidification/stabilization of LZSS in AASB by enhancing the chemical adsorption capacity of heavy metals.


2019 ◽  
Vol 7 (1) ◽  
pp. 102777 ◽  
Author(s):  
Shaole Song ◽  
Wei Sun ◽  
Li Wang ◽  
Runqing Liu ◽  
Haisheng Han ◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 1206-1215 ◽  
Author(s):  
Ming Xia ◽  
Faheem Muhammad ◽  
Linghao Zeng ◽  
Shan Li ◽  
Xiao Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document