scholarly journals Characteristics of and Influencing Factors of Hydrochemistry and Carbon/Nitrogen Variation in the Huangzhouhe River Basin, a World Natural Heritage Site

Author(s):  
Chenpeng Hu ◽  
Ziqi Liu ◽  
Kangning Xiong ◽  
Xiaoxi Lyu ◽  
Yuan Li ◽  
...  

In karst areas, the characteristics of water chemistry and carbon and nitrogen are of great significance to basic research. The contents of Ca2+, Mg2+, K+, Na+, HCO3−, SO42−, NO3−, Cl−, dissolved organic carbon (DOC), and total nitrogen (TN) in water samples from 18 rivers and 14 springs in the Huangzhouhe River Basin were determined. The results showed that the water chemistry type in the Huangzhouhe River Basin is HCO3-Ca-Mg. The chemical composition is mainly affected by dolomite weathering and also by ion exchange and other human activities. The river and spring DIC remain at the same level in the upper and middle reaches and decrease in the lower reaches. The NO3-N and TN of river water and TN of spring water increase in the middle reaches, while NO3-N of spring water decreases in the lower reaches. The DOC in the basin increases with the increase of SO42− and Cl−, mainly due to the human influence of agricultural and domestic sewage. In the basin, the NO3-N and TN in spring water are larger, and the DOC in river water is larger, mainly because there are more phytoplankton and human activities in the river water. The carbon and nitrogen in the Huangzhouhe River Basin are mainly HCO3− and NO3− ions. The evaluation of pH, Cl−, NO3-N, SO42−, and TDS shows that the water quality is good and the ecological environment is good.

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1609
Author(s):  
Xiujie Wang ◽  
Pengfei Zhang ◽  
Lüliu Liu ◽  
Dandan Li ◽  
Yanpeng Wang

In the published article [1], the authors noticed some errors in Equation (1), and wish to make the following correction to their paper [1]: Equation (1) should be corrected to S W t = S W 0 + ∑ i = 1 t ( R d a y − Q s u r f − E T − W s e e p − Q g w ) [...]


Author(s):  
Xiaoqiang Li ◽  
Guilin Han ◽  
Man Liu ◽  
Kunhua Yang ◽  
Jinke Liu

This study focuses on the chemical weathering process under the influence of human activities in the Jiulongjiang River basin, which is the most developed and heavily polluted area in southeast China. The average total dissolved solid (TDS) of the river water is 116.6 mg/L and total cation concentration ( TZ + ) is 1.5 meq/L. Calcium and HCO 3 − followed by Na + and SO 4 2 − constitute the main species in river waters. A mass balance based on cations calculation indicated that the silicate weathering (43.3%), carbonate weathering (30.7%), atmospheric (15.6%) and anthropogenic inputs (10.4%) are four reservoirs contributing to the dissolved load. Silicates (SCW) and carbonates (CCW) chemical weathering rates are calculated to be approximately 53.2 ton/km2/a and 15.0 ton/km2/a, respectively. When sulfuric and nitric acid from rainfall affected by human activities are involved in the weathering process, the actual atmospheric CO 2 consumption rates are estimated at 3.7 × 105 mol/km2/a for silicate weathering and 2.2 × 105 mol/km2/a for carbonate weathering. An overestimated carbon sink (17.4 Gg C / a ) is about 27.0% of the CO 2 consumption flux via silicate weathering in the Jiulongjiang River basin, this result shows the strong effects of anthropogenic factors on atmospheric CO 2 level and current and future climate change of earth.


Author(s):  
Zhonghe Zhao ◽  
Gaohuan Liu ◽  
Qingsheng Liu ◽  
Chong Huang ◽  
He Li

Human activities can affect soil nutrients, thereby influencing river water quality. The spatial pattern of precipitation also impacts distributions of water quality. In this paper, we employed a method that combines point survey, soil, and water quality data to analyze the spatial relationships between precipitation, soil nutrient and water quality in the basin on the basis of field surveys and laboratory analysis. The ordinary kriging method was applied to interpolate the precipitation and soil data, and the spatial pattern was analyzed. The water samples on the main stream and soil samples in the field were collected during both the dry and rainy seasons to analyze the water quality and soil nutrients. The results indicate: (1) The water quality in the dry season is better than that in the rainy season, the water quality in the upper reaches is better than that in the lower reaches, and agricultural activity is the direct source of water pollution. (2) The precipitation in the rainy and dry seasons is differente and the dilution effect of precipitation on pollutant concentrations and transport of water flow affect the spatial distribution of water quality. (3) There is a significant difference in the spatial pattern of soil nutrients between the dry and rainy seasons, and the soil nutrient content and the surface runoff directly affect the water quality. Soil nutrients are affected by human activities, and they potentially act as nonpoint source (NPS) pollution in this river basin. To improve the water quality, suitable agriculture measures need to be implemented.


2001 ◽  
Vol 30 (3) ◽  
pp. 967-981 ◽  
Author(s):  
Michael R. Williams ◽  
Solange Filoso ◽  
Luiz A. Martinelli ◽  
Luciene B. Lara ◽  
Plínio B. Camargo

1999 ◽  
pp. 97-107 ◽  
Author(s):  
Tatemasa HIRATA ◽  
Hiroyuki II ◽  
Masahiko HASEBE ◽  
Nobuyuki EGUSA ◽  
Yasushi SAKAMOTO ◽  
...  

2010 ◽  
Vol 1 (1-2) ◽  
pp. 51-54
Author(s):  
J. Fettig

Abstract The structure of public water supply in Germany and the water resources used are briefly described. An overview over the legal requirements for drinking water is given, and the sources for contaminants are outlined. Then the multiple-barrier approach is discussed with respect to the resources groundwater and spring water, lake and reservoir water, and river water. Examples for treatment schemes are given and the principle of subsurface transport of river water as a first treatment step is described.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaowan Liu ◽  
Dingzhi Peng ◽  
Zongxue Xu

Quantifying the impacts of climate changes and human activities on runoff has received extensive attention, especially for the regions with significant elevation difference. The contributions of climate changes and human activities to runoff were analyzed using rainfall-runoff relationship, double mass curve, slope variation, and water balance method during 1961–2010 at the Jinsha River basin, China. Results indicate that runoff at upstream and runoff at midstream are both dominated by climate changes, and the contributions of climate changes to runoff are 63%~72% and 53%~68%, respectively. At downstream, climate changes account for only 13%~18%, and runoff is mainly controlled by human activities, contributing 82%~87%. The availability and stability of results were compared and analyzed in the four methods. Results in slope variation, double mass curve, and water balance method except rainfall-runoff relationship method are of good agreement. And the rainfall-runoff relationship, double mass curve, and slope variation method are all of great stability. The four methods and availability evaluation of them could provide a reference to quantification in the contributions of climate changes and human activities to runoff at similar basins in the future.


Sign in / Sign up

Export Citation Format

Share Document