scholarly journals Cultivated Land Fragmentation and Its Influencing Factors Detection: A Case Study in Huaihe River Basin, China

Author(s):  
Jiale Liang ◽  
Sipei Pan ◽  
Wanxu Chen ◽  
Jiangfeng Li ◽  
Ting Zhou

The booming population and accelerating urbanization in the Huaihe River Basin have sped up the land use transformation and the cultivated land fragmentation (CLF), seriously impeded the advancement of agricultural modernization, and threatened regional stability and national food security as well. The analysis of CLF degree and its spatiotemporal distribution characteristics, along with the influencing factors in the Huaihe River Basin, is of great significance for promoting the intensive and efficient utilization of cultivated land resources and maintaining food security. Previous studies lack the measurement and cause analysis of CLF in Huaihe River Basin. To bridge the gap, this study introduces Fragstats4.2 and ArcGIS10.3 to analyze the spatiotemporal characteristics of CLF in county units in the Huaihe River Basin from 2000 to 2018 through the Lorentz curve, entropy method, and spatial auto-correlation method while the causes of the spatiotemporal differentiation of CLF in the basin were explored with the help of a geographic detector. The results show that the spatial distribution of cultivated land in the Huaihe River Basin is relatively balanced, and the Gini coefficients of cultivated land from 2000 to 2018 were 0.105, 0.108, and 0.113, respectively. More than 56% of the counties in the basin have a location entropy greater than 1. the percentage of landscape, area-weighted mean patch area, patch cohesion index, and aggregation index decrease year by year while the patch density and splitting index show an upward trend. The landscape pattern of cultivated land is highly complex, and the overall fragmentation degree is increasing. The county distribution pattern of the CLF degree with random and agglomeration is generally stable. The spatiotemporal differentiation of CLF in the Huaihe River Basin is affected by multiple factors, among which the influences of the normalized difference vegetation index, per capita cultivated land area, and intensity of human activity obviously stronger than other factors, and the contribution rate of the factors reached more than 0.4. The interaction effect among the factors is stronger than that of single factor, with dual-factor enhancement and nonlinear enhancement dominating. The results of this study have important implications for optimizing the agricultural structure in the Huaihe River Basin and alleviating the CLF in important grain production areas.

2021 ◽  
Vol 14 (18) ◽  
Author(s):  
Mohammad Ilyas Abro ◽  
Dehua Zhu ◽  
Ehsan Elahi ◽  
Asghar Ali Majidano ◽  
Bhai Khan Solangi

2006 ◽  
Vol 330 (1-2) ◽  
pp. 249-259 ◽  
Author(s):  
Charles A. Lin ◽  
Lei Wen ◽  
Guihua Lu ◽  
Zhiyong Wu ◽  
Jianyun Zhang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Chenkai Cai ◽  
Jianqun Wang ◽  
Zhijia Li

Recently, the use of the numerical rainfall forecast has become a common approach to improve the lead time of streamflow forecasts for flood control and reservoir regulation. The control forecasts of five operational global prediction systems from different centers were evaluated against the observed data by a series of area-weighted verification and classification metrics during May to September 2015–2017 in six subcatchments of the Xixian Catchment in the Huaihe River Basin. According to the demand of flood control safety, four different ensemble methods were adopted to reduce the forecast errors of the datasets, especially the errors of missing alarm (MA), which may be detrimental to reservoir regulation and flood control. The results indicate that the raw forecast datasets have large missing alarm errors (MEs) and cannot be directly applied to the extension of flood forecasting lead time. Although the ensemble methods can improve the performance of rainfall forecasts, the missing alarm error is still large, leading to a huge hazard in flood control. To improve the lead time of the flood forecast, as well as avert the risk from rainfall prediction, a new ensemble method was proposed on the basis of support vector regression (SVR). Compared to the other methods, the new method has a better ability in reducing the ME of the forecasts. More specifically, with the use of the new method, the lead time of flood forecasts can be prolonged to at least 3 d without great risk in flood control, which corresponds to the aim of flood prevention and disaster reduction.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong Fan ◽  
Shengdi Zhang ◽  
Zongyi He ◽  
Biao He ◽  
Haicong Yu ◽  
...  

The spatial pattern and evolution of urban system have been hot research issues in the field of urban research. In this paper, the network analysis method based on the gravity model and the related measurements were used to reveal the properties of the spatial pattern and evolution of the urban system in the HRB (Huaihe River Basin) of China. The findings of this study are as follows: During the period from 2006 to 2014, the economic contact between the HRB cities has been strengthened, but the differences between cities have been expanding. In general, the HRB cities have not yet formed a close network structure, and a trend of economic integration has not been found. This paper expresses the spatial pattern and evolution of urban system in an intuitive way and helps to explain the evolution mechanism of urban system. The method was confirmed by empirical research. Because of the operational and visual expression, this method has broad application prospects in the urban system research.


Author(s):  
Q. Li ◽  
M. Zeng ◽  
H. Wang ◽  
P. Li ◽  
K. Wang ◽  
...  

Abstract. The Huaihe River Basin having China's highest population density (662 persons per km2) lies in a transition zone between the climates of North and South China, and is thus prone to drought. Therefore, the paper aims to develop an appropriate drought assessment approach for drought assessment in the Huaihe River basin, China. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by use of the Xin'anjiang model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. The MDI, the Standardized Precipitation Index (SPI) and the self-calibrating Palmer Drought Severity Index (sc-PDSI) time series on a monthly scale were computed and compared during 1988, 1999/2000 and 2001 drought events. The results show that the MDI exhibited certain advantages over the sc-PDSI and the SPI in monitoring drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.


2018 ◽  
Vol 30 (4) ◽  
pp. 1123-1137
Author(s):  
SUN Peng ◽  
◽  
SUN Yuyan ◽  
ZHANG Qiang ◽  
YAO Rui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document