scholarly journals A GIS-Based Multi-Criterion Decision-Making Method to Select City Fire Brigade: A Case Study of Wuhan, China

2021 ◽  
Vol 10 (11) ◽  
pp. 777
Author(s):  
Yuncheng Jiang ◽  
Aifeng Lv ◽  
Zhigang Yan ◽  
Zhen Yang

Rapid urban expansion has brought new challenges to firefighting, with the speed of firefighting rescue being crucial for the safety of property and life. Thus, fire prevention and rescuing people in distress have become more challenging for city managers and emergency responders. Unfortunately, existing research does not consider the negative effects of the current spatial distribution of fire-risk areas, land cover, location, and traffic congestion. To address these shortcomings, we use multiple methods (including geographic information system, multi-criterion decision-making, and location–allocation (L-A)) and multi-source geospatial data (including land cover, point-of-interest, drive time, and statistical yearbooks) to identify suitable areas for fire brigades. We propose a method for identifying potential fire-risk areas and to select suitable fire brigade zones. In this method, we first remove exclusion criteria to identify spatially undeveloped zones and use kernel density methods to evaluate the various fire-risk zones. Next, we use analytic hierarchy processes (AHPs) to comprehensively evaluate the undeveloped areas according to the location, orography, and potential fire-risk zones. In addition, based on the multi-time traffic situation, the average traffic speed during rush hour of each road is calculated, a traffic network model is established, and the travel time is calculated. Finally, the L-A model and network analysis are used to map the spatial coverage of the fire brigades, which is optimized by combining various objectives, such as the coverage rate of high-fire-risk zones, the coverage rate of building construction, and the maintenance of a sub-five-minute drive time between the proposed fire brigade and the demand point. The result shows that the top 50% of fire-risk zones in the central part of Wuhan are mainly concentrated to the west of the Yangtze River. Good overall rescue coverage is obtained with existing fire brigades, but the fire brigades in the north, south, southwest, and eastern areas of the study area lack rescue capabilities. The optimized results show that, to cover the high-fire-risk zones and building constructions, nine fire brigades should be added to increase the service coverage rate from 93.28% to 99.01%. The proposed method combines the viewpoint of big data, which provides new ideas and technical methods for the fire brigade site-selection model.

2021 ◽  
Vol 10 (5) ◽  
pp. 282
Author(s):  
Wenda Wang ◽  
Zhibang Xu ◽  
Dongqi Sun ◽  
Ting Lan

The spatial distribution of fire stations is an important component of both urban development and urban safety. For expanding mega-cities, land-use and building function are subject to frequent changes, hence a complete picture of risk profiles is likely to be lacking. Challenges for prevention can be overwhelming for city managers and emergency responders. In this context, we use points of interest (POI) data and multi-time traffic situation (MTS) data to investigate the actual coverage of fire stations in central Beijing under different traffic situations. A method for identifying fire risks of mega cities and optimizing the spatial distribution of fire stations was proposed. First, fire risks associated with distinctive building and land-use functions and their spatial distribution were evaluated using POI data and kernel density analysis. Furthermore, based on the MTS data, a multi-scenario road network was constructed. The “location-allocation” (L-A) model and network analysis were used to map the spatial coverage of the fire stations in the study area, optimized by combining different targets (e.g., coverage of high fire risk areas, important fire risk types). Results show that the top 10% of Beijing’s fire risk areas are concentrated in “Sanlitun-Guomao”, “Ditan-Nanluogu-Wangfujing”, and “Shuangjing-Panjiayuan”, as well as at Beijing Railway Station. Under a quarterly average traffic situation, existing fire stations within the study area exhibit good overall POI coverage (96.51%) within a five-minute response time. However, the coverage in the northwest and southwest, etc. (e.g., Shijicheng and Minzhuang) remain insufficient. On weekdays and weekends, the coverage of fire stations in the morning and evening rush hours fluctuates. Considering the factors of high fire risk areas, major fire risk types, etc. the results of optimization show that 15 additional fire stations are needed to provide sufficient coverage. The methods and results of this research have positive significance for future urban safety planning of mega-cities.


Author(s):  
A.E. Vlasenko ◽  
N.M. Zhilina ◽  
A.A. Kozhevnikov ◽  
G.I. Chechenin

The article presents the algorithm for calculating the integral index of problems in the evaluation of indicators of population health and identifying risk areas. The integral indices for Novokuznetsk municipal district were calculated. The index can be used by specialists of various levels and regions in assessing the level of health, environmental and socio-economic indicators for appropriate decision-making.


Data ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 63
Author(s):  
Dong Chen ◽  
Varada Shevade ◽  
Allison Baer ◽  
Jiaying He ◽  
Amanda Hoffman-Hall ◽  
...  

Malaria is a serious infectious disease that leads to massive casualties globally. Myanmar is a key battleground for the global fight against malaria because it is where the emergence of drug-resistant malaria parasites has been documented. Controlling the spread of malaria in Myanmar thus carries global significance, because the failure to do so would lead to devastating consequences in vast areas where malaria is prevalent in tropical/subtropical regions around the world. Thanks to its wide and consistent spatial coverage, remote sensing has become increasingly used in the public health domain. Specifically, remote sensing-based land cover/land use (LCLU) maps present a powerful tool that provides critical information on population distribution and on the potential human-vector interactions interfaces on a large spatial scale. Here, we present a 30-meter LCLU map that was created specifically for the malaria control and eradication efforts in Myanmar. This bottom-up approach can be modified and customized to other vector-borne infectious diseases in Myanmar or other Southeastern Asian countries.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fateme Omidvari ◽  
Mehdi Jahangiri ◽  
Reza Mehryar ◽  
Moslem Alimohammadlou ◽  
Mojtaba Kamalinia

Fire is one of the most dangerous phenomena causing major casualties and financial losses in hospitals and healthcare settings. In order to prevent and control the fire sources, first risk assessment should be conducted. Failure Mode and Effect Analysis (FMEA) is one of the techniques widely used for risk assessment. However, Risk Priority Number (RPN) in this technique does not take into account the weight of the risk parameters. In addition, indirect relationships between risk parameters and expert opinions are not considered in decision making in this method. The aim is to conduct fire risk assessment of healthcare setting using the application of FMEA combined with Multi‐Criteria Decision Making (MCDM) methods. First, a review of previous studies on fire risk assessment was conducted and existing rules were identified. Then, the factors influencing fire risk were classified according to FMEA criteria. In the next step, weights of fire risk criteria and subcriteria were determined using Intuitionistic Fuzzy Multiplicative Best-Worst Method (IFMBWM) and different wards of the hospital were ranked using Interval-Valued Intuitionistic Fuzzy Combinative Distance-based Assessment (IVIFCODAS) method. Finally, a case study was performed in one of the hospitals of Shiraz University of Medical Sciences. In this study, fire alarm system (0.4995), electrical equipment and installations (0.277), and flammable materials (0.1065) had the highest weight, respectively. The hospital powerhouse also had the highest fire risk, due to the lack of fire extinguishers, alarms and fire detection, facilities located in the basement floor, boilers and explosive sensitivity, insufficient access, and housekeeping. The use of MCDM methods in combination with the FMEA method assesses the risk of fire in hospitals and health centers with great accuracy.


2021 ◽  
Vol 63 (1) ◽  
pp. 21-35
Author(s):  
Djamel Anteur ◽  
Abdelkrim Benaradj ◽  
Youcef Fekir ◽  
Djillali Baghdadi

Abstract The great forest of Zakour is located north of the commune of Mamounia (department of Mascara). It is considered the lung of the city of Mascara, covers an area of 126.8 ha. It is a forest that is subject to several natural and human constraints. Among them, the fires are a major danger because of their impacts on forest ecosystems. The purpose of this work is to develop a fire risk map of the Zakour Forest through the contribution of geomatics according to natural and anthropogenic conditions (human activities, agglomeration, agricultural land) while integrating information from ground on the physiognomy of the vegetation. For this, the creation of a clearer fire risk map to delimit the zones potentially sensitive to forest fires in the forest area of Zakour. This then allows good implementation of detection management plans, for better prevention and decision-making assistance in protecting and fighting forest fires.


2016 ◽  
Vol 25 (5) ◽  
pp. 505 ◽  
Author(s):  
Futao Guo ◽  
Guangyu Wang ◽  
Zhangwen Su ◽  
Huiling Liang ◽  
Wenhui Wang ◽  
...  

We applied logistic regression and Random Forest to evaluate drivers of fire occurrence on a provincial scale. Potential driving factors were divided into two groups according to scale of influence: ‘climate factors’, which operate on a regional scale, and ‘local factors’, which includes infrastructure, vegetation, topographic and socioeconomic data. The groups of factors were analysed separately and then significant factors from both groups were analysed together. Both models identified significant driving factors, which were ranked in terms of relative importance. Results show that climate factors are the main drivers of fire occurrence in the forests of Fujian, China. Particularly, sunshine hours, relative humidity (fire seasonal and daily), precipitation (fire season) and temperature (fire seasonal and daily) were seen to play a crucial role in fire ignition. Of the local factors, elevation, distance to railway and per capita GDP were found to be most significant. Random Forest demonstrated a higher predictive ability than logistic regression across all groups of factors (climate, local, and climate and local combined). Maps of the likelihood of fire occurrence in Fujian illustrate that the high fire-risk zones are distributed across administrative divisions; consequently, fire management strategies should be devised based on fire-risk zones, rather than on separate administrative divisions.


Sign in / Sign up

Export Citation Format

Share Document