Identification of erosion-prone areas using morphometric parameters, land use land cover and multi-criteria decision-making method: geo-informatics approach

Author(s):  
Paolenmang Haokip ◽  
Md. Abdullah Khan ◽  
Pandurang Choudhari ◽  
Luc Cimusa Kulimushi ◽  
Ibodullo Qaraev
Author(s):  
M. Kaur ◽  
S. Singh ◽  
V. K. Verma ◽  
B. Pateriya

Morphometric analysis is the measurement and mathematical analysis of the landforms. The delineation of drainage system is of utmost importance in understanding hydrological system of an area, water resource management and it's planning in an effective manner. Morphometric analysis and land use change detection of two sub-watersheds namely Kukar Suha and Ratewal of district Shahid Bhagat Singh Nagar, Punjab, India was carried out for quantitative description of drainage and characterisation. The stream order, stream number, stream length, mean stream length, and other morphometric analysis like bifurcation ratio, drainage density, texture, relief ratio, ruggedness number etc. were measured. The drainage pattern of Kukar Suha and Ratewal is mainly dendritic. The agriculture and settlements came up along the drainage network causes the pattern disturbance in the watershed. The study was undertaken to spotlight the morphometric parameters, their impact on the basin and the land use land cover changes occurred over the period of time. Morphometric parameters such as linear aspect, areal aspect and relief aspect of the watershed are computed. The land use/land cover change was extracted from LISS IV Mx + Cartosat1 PAN data. ASTER data is used to prepare DEM (digital elevation model) and geographical information system (GIS) was used to evaluate various morphometric parameters in ArcGIS10 software.


2021 ◽  
Vol 13 (13) ◽  
pp. 7095
Author(s):  
Uta Schirpke ◽  
Erich Tasser

The growing pressure on society due to global change requires better integration of ecosystem services (ES) into decision-making. Despite a growing number of ES assessments, Europe-wide information on recent changes of multiple ES is still rare. This study aimed at analysing changes in ES values between 2000 and 2018 across Europe based on land use/land cover (LULC) distribution. We mapped 19 ES for 52 ecoregions and identified six major groups of ecoregions with similar LULC distribution and trends. Our results indicated that provisioning ES mainly increased in the forest-dominated region (G2), decreasing in the near-natural grassland region (G1), the region with agricultural mixed systems (G3), and the intensively-used steppic region (G6). Regulating ES slightly decreased in G1 and G6, but increased in G2 and the wetland-dominated region (G5). Cultural ES had generally low negative trends for most ecoregions. In addition, our results revealed ecoregions with differing trends in ES that could be related to specific socioeconomic developments. Our findings provide spatial and quantitative information that can be used for policy development at European national and regional levels—as well as for monitoring of ES.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2537
Author(s):  
Eric Duku ◽  
Precious Agbeko Dzorgbe Mattah ◽  
Donatus Bapentire Angnuureng

The rapid urbanization, industrialization, agricultural activities, and increasing trend of some natural hazards, such as climate change, particularly in coastal areas, necessitate the continual assessment of critical but fragile ecosystems like that of the Keta Lagoon Complex Ramsar Site (KLCRS). This productive ecosystem in Ghana faces serious threats from intensive exploitation, physical modification, changes in water regime, and water pollution. The current study employed geospatial and intensity analysis to assess the pattern of land use/land cover (LULC) change for almost the past three decades and morphometric parameters of the KLCRS landscape. Landsat Satellite images for 1991, 2007, and 2020 were acquired to uncover the pattern of LULC change, while morphometric changes were assessed using global Advance Space Thermal Emission and Radiometer (ASTER) digital elevation model (DEM) data and the spatial analyst tools in GIS software. The result established that the acceleration of land transformation was intensive between 2007 and 2020, which could be linked to population growth and increased socio-economic activities. There was a net gross gain of built-up that originated largely from the conversion of marsh, dense vegetation, and cultivated land. Prior to this period, cultivated land recorded net gain (125.51 km2) between 1991 and 2007, whereas dense vegetation and marshland showed a net loss of 151.37 km2 and 2.44 km2, respectively. The gain of cultivated land largely targeted marshland in both time intervals. The construction of saltpans contributed largely to the small increase in water extent. The morphometric analysis revealed the groundwater potential of the KLCRS. The low-lying nature of the landscape makes the area susceptible to coastal flooding. The trend of the observed changes could invariably affect the ecological integrity of the landscape, hence suggesting the need for immediate preparation and implementation of marine and coastal spatial plans by relevant stakeholders.


One Ecosystem ◽  
2021 ◽  
Vol 6 ◽  
Author(s):  
Ina M. Sieber ◽  
Malte Hinsch ◽  
Marta Vergílio ◽  
Artur Gil ◽  
Benjamin Burkhard

Modelling ecosystem services (ES) has become a new standard for the quantification and assessment of various ES. Multiple ES model applications are available that spatially estimate ES supply on the basis of land-use/land-cover (LULC) input data. This paper assesses how different input LULC datasets affect the modelling and mapping of ES supply for a case study on Terceira Island, the Azores (Portugal), namely: (1) the EU-wide CORINE LULC, (2) the Azores Region official LULC map (COS.A 2018) and (3) a remote sensing-based LULC and vegetation map of Terceira Island using Sentinel-2 satellite imagery. The InVEST model suite was applied, modelling altogether six ES (Recreation/Visitation, Pollination, Carbon Storage, Nutrient Delivery Ratio, Sediment Delivery Ratio and Seasonal Water Yield). Model outcomes of the three LULC datasets were compared in terms of similarity, performance and applicability for the user. For some InVEST modules, such as Pollination and Recreation, the differences in the LULC datasets had limited influence on the model results. For InVEST modules, based on more complex calculations and processes, such as Nutrient Delivery Ratio, the output ES maps showed a skewed distribution of ES supply. Yet, model results showed significant differences for differences in all modules and all LULCs. Understanding how differences arise between the LULC input datasets and the respective effect on model results is imperative when computing model-based ES maps. The choice for selecting appropriate LULC data should depend on: 1) the research or policy/decision-making question guiding the modelling study, 2) the ecosystems to be mapped, but also on 3) the spatial resolution of the mapping and 4) data availability at the local level. Communication and transparency on model input data are needed, especially if ES maps are used for supporting land use planning and decision-making.


2017 ◽  
Vol 04 (03) ◽  
pp. 272-277
Author(s):  
Tawhida A. Yousif ◽  
Nancy I. Abdalla ◽  
El-Mugheira M. Ibrahim ◽  
Afraa M. E. Adam

Sign in / Sign up

Export Citation Format

Share Document