scholarly journals Virtual Reality-Based Fuzzy Spatial Relation Knowledge Extraction Method for Observer-Centered Vague Location Descriptions

2021 ◽  
Vol 10 (12) ◽  
pp. 833
Author(s):  
Jun Xu ◽  
Xin Pan ◽  
Jian Zhao ◽  
Haohai Fu

Many documents contain vague location descriptions of observed objects. To represent location information in geographic information systems (GISs), these vague location descriptions need to be transformed into representable fuzzy spatial regions, and knowledge about the location descriptions of observer-to-object spatial relations must serve as the basis for this transformation process. However, a location description from the observer perspective is not a specific fuzzy function, but comes from a subjective viewpoint, which will be different for different individuals, making the corresponding knowledge difficult to represent or obtain. To extract spatial knowledge from such subjective descriptions, this research proposes a virtual reality (VR)-based fuzzy spatial relation knowledge extraction method for observer-centered vague location descriptions (VR-FSRKE). In VR-FSRKE, a VR scene is constructed, and users can interactively determine the fuzzy region corresponding to a location description under the simulated VR observer perspective. Then, a spatial region clustering mechanism is established to summarize the fuzzy regions identified by various individuals into fuzzy spatial relation knowledge. Experiments show that, on the basis of interactive scenes provided through VR, VR-FSRKE can efficiently extract spatial relation knowledge from many individuals and is not restricted by requirements of a certain place or time; furthermore, the knowledge obtained by VR-FSRKE is close to the knowledge obtained from a real scene.

2020 ◽  
Vol 9 (12) ◽  
pp. 703
Author(s):  
Jun Xu ◽  
Xin Pan

Descriptions of the spatial locations of disappeared objects are often recorded in eyewitness records, travel notes, and historical documents. However, in geographic information system (GIS), the observer-centered and vague nature of the descriptions causes difficulties in representing the spatial characters of these objects. To address this problem, this paper proposes a Fuzzy Spatial Region Extraction Model for Object’s Vague Location Description from Observer Perspective (FSREM-OP). In this model, the spatial relationship between the observer and the object are represented in spatial knowledge. It is composed of “phrase” and “region”. Based on the spatial knowledge, three components of spatial inference are constructed: Spatial Entities (SEs), Fuzzy Spatial Regions (FSRs), and Spatial Actions (SAs). Through spatial knowledge and the components of FSREM-OP, an object’s location can be inferred from an observer’s describing text, transforming the vagueness and subjectivity of location description into fuzzy spatial regions in the GIS. The FSREM-OP was tested by constructing a group of observers, object position relationships and vague descriptions. The results show that it is capable of extracting the spatial information and presenting location descriptions in the GIS, despite the vagueness and subjective spatial relation expressions in the descriptions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Víctor Acedo-Matellán

Abstract Prefixed verbs in Latin may take an argument in the dative case, interpreted as the ground of the spatial relation codified by the preverb. This phenomenon is constrained by the semantics of that spatial relation: while preverbs encoding a location, a goal, or a source of motion generally accept the dative argument, preverbs encoding a route do not. I propose a syntactic analysis of this phenomenon, framed within the Spanning framework. I assume an analysis of the spatial dative as an applied argument interpreted as a possessor of the final location of motion. Developing a configurational theory of spatial relations, I show how only the syntax-semantics of the preverbs interpreted as encoding a location, be this final (a goal), initial (a source), or unrelated to motion (a static location), is compatible with the projection of an Appl(icative)P integrating the dative argument. By the same token, pure route preverbs, involving a path but not a location, are correctly predicted to disallow the projection of ApplP, and hence the spatial dative.


Author(s):  
H. J. Liang ◽  
H. Wang ◽  
T. J. Cui ◽  
J. F. Guo

Spatial Relation is one of the important components of Geographical Information Science and Spatial Database. There have been lots of researches on Spatial Relation and many different spatial relations have been proposed. The relationships among these spatial relations such as hierarchy and so on are complex and this brings some difficulties to the applications and teaching of these spatial relations. This paper summaries some common spatial relations, extracts the topic types, association types, resource types of these spatial relations using the technology of Topic Maps, and builds many different relationships among these spatial relations. Finally, this paper utilizes Java and Ontopia to build a topic map among these common spatial relations, forms a complex knowledge network of spatial relations, and realizes the effective management and retrieval of spatial relations.


2014 ◽  
Vol 6 ◽  
pp. 547947 ◽  
Author(s):  
Yaohua Deng ◽  
Qiwen Lu ◽  
Jiayuan Chen ◽  
Sicheng Chen ◽  
Liming Wu ◽  
...  

Through analyzing the flexible material processing (FMP) deformation factors, it is pointed out that without a choice of deformation influence quantity would increase the compensation control predict model system input. In order to reduce the count of spatial dimensions of knowledge, we proposed the method by taking the use of FMP deformation compensation control knowledge extraction, which is based on decision table (DT) attribute reduction, deriving the algorithm that is based on information entropy attribute importance, to find the dependencies between attributes through attribute significance (AS) and to extract the intrinsic attributes which is the most close to deformation compensation control decision making. Finally, through an example presented in this paper to verify the efficiency of RS control knowledge extraction method. Compared with the Pawlak method and genetic extraction algorithm, the prediction accuracy of after reduction data is 0.55% less than Pawlak method and 3.64% higher than the genetic extraction algorithm; however, the time consumption of forecast calculation is 30.3% and 11.53% less than Pawlak method and genetic extraction algorithm, respectively. Knowledge extraction entropy methods presented in this paper have the advantages of fast calculating speed and high accuracy and are suitable for FMP deformation compensation of online control.


2020 ◽  
Vol 33 (4-5) ◽  
pp. 479-503 ◽  
Author(s):  
Lukas Hejtmanek ◽  
Michael Starrett ◽  
Emilio Ferrer ◽  
Arne D. Ekstrom

Abstract Past studies suggest that learning a spatial environment by navigating on a desktop computer can lead to significant acquisition of spatial knowledge, although typically less than navigating in the real world. Exactly how this might differ when learning in immersive virtual interfaces that offer a rich set of multisensory cues remains to be fully explored. In this study, participants learned a campus building environment by navigating (1) the real-world version, (2) an immersive version involving an omnidirectional treadmill and head-mounted display, or (3) a version navigated on a desktop computer with a mouse and a keyboard. Participants first navigated the building in one of the three different interfaces and, afterward, navigated the real-world building to assess information transfer. To determine how well they learned the spatial layout, we measured path length, visitation errors, and pointing errors. Both virtual conditions resulted in significant learning and transfer to the real world, suggesting their efficacy in mimicking some aspects of real-world navigation. Overall, real-world navigation outperformed both immersive and desktop navigation, effects particularly pronounced early in learning. This was also suggested in a second experiment involving transfer from the real world to immersive virtual reality (VR). Analysis of effect sizes of going from virtual conditions to the real world suggested a slight advantage for immersive VR compared to desktop in terms of transfer, although at the cost of increased likelihood of dropout. Our findings suggest that virtual navigation results in significant learning, regardless of the interface, with immersive VR providing some advantage when transferring to the real world.


Author(s):  
Oliver Herbort ◽  
Lisa-Marie Krause ◽  
Wilfried Kunde

Abstract Pointing is a ubiquitous means of communication. Nevertheless, observers systematically misinterpret the location indicated by pointers. We examined whether these misunderstandings result from the typically different viewpoints of pointers and observers. Participants either pointed themselves or interpreted points while assuming the pointer’s or a typical observer perspective in a virtual reality environment. The perspective had a strong effect on the relationship between pointing gestures and referents, whereas the task had only a minor influence. This suggests that misunderstandings between pointers and observers primarily result from their typically different viewpoints.


Author(s):  
Mian Dai ◽  
◽  
Fangyan Dong ◽  
Kaoru Hirota

A concept of fuzzy three-dimensional Voronoi Diagram is presented for spatial relations analysis of real world three-dimensional geographical data, where it is an extension of well known two-dimensional Voronoi Diagram to three-dimensional representation with uncertain spatial relation information in terms of fuzzy set. It makes possible to analyze quantitatively complex boundaries of geographically intricate areas, to give human friendly fuzzy explanation of determining three-dimensional directions, and to express uncertain spatial relations by precise unified fuzzy description. It is applied to decide spatial direction relations of artificial geographicalmountain data, which includes 8 spatial directions with at most 60 relative direction relations, and it leads to detect threedimensional directions whereas the expression of traditional 4 directions and 12 relative directions indicate two-dimensional directions only. The proposed concept aims to discriminate neighbors’ class relations and spatial-temporal changes of specially appointed objects, and also aims to be a tool to achieve the intellective extraction and analysis of geographical data of a mountainous area located in northeast China.


Sign in / Sign up

Export Citation Format

Share Document