scholarly journals The Feasibility of a BIM-Driven Approach to Support Building Subdivision Workflows—Case Study of Victoria, Australia

2019 ◽  
Vol 8 (11) ◽  
pp. 499 ◽  
Author(s):  
Olfat ◽  
Atazadeh ◽  
Shojaei ◽  
Rajabifard

Cities are facing dramatic challenges due to population growth and the massive development of high-rises and complex structures, both above and below the ground surface. Decision-makers require access to an efficient land and property information system, which is digital, three-dimensional (3D), spatially accurate, and dynamic containing interests in land (rights, restrictions and responsibilities—RRRs) to manage the legal and physical complexities of urban environments. However, at present, building subdivision workflows only support the two-dimensional (2D) building subdivision plans in PDF or image formats. These workflows result in a number of issues, such as the plan preparation being complex, the examination process being labor intensive and requiring technical expertise, information not being easily reusable by all subdivision stakeholders, queries, analyses, and decision-making being inefficient, and the RRRs interpretation being difficult. The aim of this research is to explore the potential of using Building Information Modelling (BIM) and its open standards to support the building subdivision workflows. The research that is presented in this paper proposes a BIM-driven building subdivision workflow, evaluated through a case study in the state of Victoria, Australia. The results of the study confirmed that the proposed workflow could provide a feasible integrated mechanism for stakeholders to share, document, visualize, analyze, interpret, and reuse 3D digital cadastral data over the lifespan of a building subdivision project.

2021 ◽  
Vol 11 (24) ◽  
pp. 11899
Author(s):  
Ángela Moreno Bazán ◽  
Marcos García Alberti ◽  
Antonio A. Arcos Álvarez ◽  
Rubén Muñoz Pavón ◽  
Adela González Barbado

Building Information Modelling (BIM) is modifying the workflow of the construction field, not only in design and construction stages but also for the management of the facilities. Most advances in academics and industry have focussed on the use of BIM for building. However, the possibilities of the use of three-dimensional information models for the construction and management of public works and civil engineering infrastructure projects (known as CIM) are still a matter of concern, being complex though offering a wider number of possibilities when compared with regular building industry. Moreover, the construction process in comparison with its lifespan represent only a small part of the investments for the use of public works. With this background, the possibilities based on BIM for the maintenance and rehabilitation of public heritage (HCIM) can greatly improve traditional management capabilities. Making best use of BIM and digitalisation for the management of public heritage (HCIM) requires creating tools for documentation, registering and data management to permit the adequate information transfer between the actors involved. Such actors may be experts or not and hold or not skills to use BIM tools. This study proposes the creation of a database to support the regular inspection during the lifespan of the infrastructure and connect it with the three-dimensional information model, serving the latter as an information repository of the whole life of the infrastructure. Such data include damage and causes as well as a description of the pathology and this information is referred to each element, showing all the historic measures taken. In addition, quantification and quotation of the repairs needed can be obtained. Lastly, the study has applied this methodology in Algeciras Market Hall, the notorious rationalist building designed by the engineer Eduardo Torroja and built in 1935. The results shown in this study can be of great interest for both researchers and practice, with an adaptation and innovation of the BIM and HCIM possibilities.


2020 ◽  
Author(s):  
Kliment Ivanov

Nowadays the technology is often ahead of its implementation in the practice. Two novel technologies have affected the field of conservation and documentation of cultural and historic heritage and await their proper mutual integration. They are the 3D photogrammetric surveying and the Building Information Modelling (BIM). This research proposes a methodology for producing a complete and precise 3D Building Information Model from a point cloud, obtained via a 3D photogrammetric survey. An existing traditional house in Bulgaria is used as a case study. The aims were to optimise the process and to minimise the large number of software, used in the conventional workflow. They were achieved using only one application - ArchiCAD version 22. The complete BIM was later used for producing 3D artistic visualisations and for an interactive 3D web presentation. This paper describes the methodology and the software needed, discussing the techniques and the results.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 325-348
Author(s):  
Kane Whitlock ◽  
Fonbeyin Henry Abanda ◽  
Marcelline Blanche Manjia ◽  
Chrispin Pettang ◽  
George Elambo Nkeng

This study presents an investigation into the extent to which emerging building information modelling (BIM) can be applied to construction logistics management (CLM). Given the specialist nature of the domains, the study employed an in-depth qualitative interview, whereby six experts were interrogated about their experiences of BIM for CLM. The study found the main applications of BIM on CLM to be the creation of three-dimensional (3D) site layout plans and four-dimensional (4D) coordination of site processes and common user plant, updating the 4D logistics plan as the project progressed and collaboration in BIM-based logistics coordination. Furthermore, there was a consensus amongst interviewees on improvement in site safety, comprehension of logistics information, efficiency on site, and effectiveness of layout planning as the main benefits. Lastly, the lack of training with implications on understanding was one of the main barriers to applying BIM to CLM. The findings from this study have the potential to stimulate the uptake of BIM by construction logistics practitioners. By so doing, the performance construction project delivery can be improved, and waste can be minimised or eliminated.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 323
Author(s):  
Vachara Peansupap ◽  
Pisal Nov ◽  
Tanit Tongthong

The kingpost was a vertical element that was used to support the structural strut in the deep excavation. The structural kingpost was commonly arranged by experienced engineers who used two-dimensional construction drawings. Thus, it was still time-consuming and error-prone. Currently, an available construction program has been developed to arrange the structural kingpost by identifying the clash problems in the 3D environment. However, they have a limitation for detecting the clash that was unable to visualize the concurrent clashes between kingpost and many underground structures. Then, the engineer cannot see all the clash incidents with each kingpost and move the kingpost to avoid the clashes successfully. Since the kingpost arrangement was still an inefficient practice that was limited in the visualization aspect, this research used engineering knowledge and advanced construction technology to detect and solve the clashes between kingposts and underground structures. The methodology used engineering knowledge of kingpost arrangement to develop the system modules by using a rule-based approach. Then, these modules were developed into the system by using visual programming of Building Information Modelling (BIM). To test the system, an underground structure from building construction was selected as a case study to apply the developed system. Finally, the finding of this study could overcome human judgment by providing less interaction in the kingpost arrangement and visualization improvement of clash occurrences in the 3D model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Hemalattha ◽  
R. Vidjeapriya

PurposeThis study aims to develop a framework for optimizing the spatial requirements of the equipment in a construction site using a geographic information system (GIS).Design/methodology/approachAn ongoing construction project, an existing thermal powerplant in India, is considered to be the case study, and the corresponding construction activities were scheduled. The equipment spaces were defined for the scheduled activities in building information modelling (BIM), which was further imported to GIS to define the topology rules, validate and optimize the spatial requirements. The BIM simulates the indoor environment, which includes the actual structure being constructed, and the GIS helps in modelling the outdoor environment, which includes the existing structures, temporary facilitates, topography of the site, etc.; thus, this study incorporates the knowledge of BIM in a geospatial environment to obtain optimized equipment spaces for various activities.FindingsSpace in construction projects is to be considered as a resource as well as a constraint, which is to be modelled and planned according to the requirements. The integration of BIM and GIS for equipment space planning will enable precise identification of the errors in the equipment spaces defined and also result in fewer errors as possible. The integration has also eased the process of assigning the topology rules and validating the same, which otherwise is a tedious process.Originality/valueThe workspace for each activity will include the space of the equipment. But, in most of the previous works of workspace planning, only the labour space is considered, and the conflicts and congestions occurring due to the equipment were neglected. The planning of equipment spaces cannot be done based only on the indoor environment; it has to be carried out by considering the surroundings and topography of the site, which have not been researched extensively despite its importance.


2021 ◽  
Vol 26 ◽  
pp. 643-656
Author(s):  
Amichai Mitelman ◽  
Ury Gurevich

The topic of Building Information Modelling (BIM) adoption by public organizations has become a central subject of research, and a significant amount of BIM documents, guidelines, and standards have been created to meet different organizational purposes. Compared to the building industry, the application of BIM tools for tunnel project management is lagging far behind. This paper proposes a methodology for integrating BIM tools for conventional tunnelling. A fundamental distinction is made between the tunnel internal architectural domain and the external structural domain. For the former, BIM methodology can be applied similarly to the building industry. For the latter, it is suggested that a BIM model be built according to the essential information generated during tunnelling excavation. The proposed methodology was put to test for an actual tunneling project. A routine was established where the supervisor on behalf of the owner was responsible for gathering and reporting essential data in tabular form. Via REVIT's Application Programming Interface (API), a code was developed so that a BIM model was built and updated automatic to data insertion. Ultimately, the final BIM model allows managing up-to-date qualitative and quantitative information visually. Thus, human understanding and interpretation are enhanced for future uses, such as maintenance, future renovations and project post-analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zul-Atfi Bin Ismail

PurposeThe contemporary practice of conventional maintenance for industrialised building system (IBS) constructions suffers from poor service delivery and defect repetition. A key problem impeding the widespread adoption of emerging technologies is the lack of competent contractors to support the effectiveness of the technology implemented in conventional methods and to ensure returns on investment. The shortcomings of conventional methods are assessed from the perspective of IBS buildings. This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes.Design/methodology/approachThis paper describes the establishment of key problem areas, the elements involved in implementing good practice and the requirements for integrating maintenance management processes and information databases in the maintenance management system.FindingsConventional methods have little emphasis on defect diagnosis tools. They also enhance inadequate strategic decision-making in the analysis of information when attempting to improve the maintenance project outcomes for IBS construction. The characteristics identified in a case study of IBS buildings are presented and analysed.Originality/valueThe conclusions and recommendations drawn from the analysis of the IBS case study are discussed, synthesised and deliberated upon. The approach presented in this paper integrates various aspects of building information modelling technology to facilitate improved execution of IBS maintenance activities.


2017 ◽  
Vol 15 (1) ◽  
pp. 15-34 ◽  
Author(s):  
Olufolahan Oduyemi ◽  
Michael Iheoma Okoroh ◽  
Oluwaseun Samuel Fajana

Purpose The purpose of this paper is to explore and rank the benefits and barriers (technological and non-technological) of using Building Information Modelling (BIM) in sustainable building design. It also employs the use of a design tool analysis of a case study using BIM compatible tools (Ecotect and Green Building Studio) to determine the environmental performance of a proposed multi-use building at Derby North. Design/methodology/approach The paper explores the benefits and barriers of using BIM through a literature review. Regression and factor analysis were used to rank these benefits and barriers. A questionnaire was distributed to a sample of 120 practitioners with 69 completing the survey. Finally, the paper employs the use of a design tool analysis of a case study using BIM-compatible tools (Ecotect and Green Building Studio) to determine the environmental performance of a proposed multi-use building at Derby North riverside. Findings The key findings of the statistical analysis indicated that professionals ranked the integrated project delivery as the most established benefit, while the lack of interoperability was ranked the greatest technological challenge. Only three of the attributes of non-technological challenges made statistically unique contributions, namely, training costs and software costs, client demand and potential legal issues. It was also discovered that BIM delivers information needed for environmental performance. In a forward-looking approach, the paper attempts to provide some recommendations that would encourage the continuous application of BIM in sustainable building design. Research limitations/implications This paper does not cover all features of BIM functionality, as the scope of BIM is very enormous and the resources of this research were limited. Practical implications The implication of the study is that it will assist in exploring and ranking the benefits and barriers (technological and non-technological) of using BIM while proffering recommendations for future use. This research will be of interest to industry practitioners and academic researchers with an interest in building information modelling. Originality/value This paper contributes with new outlooks aimed at syndicating sustainability with environmental performance and adds to the limited empirical studies on the benefits and barriers of the application of BIM.


Sign in / Sign up

Export Citation Format

Share Document