scholarly journals BIM-Based Methodology for the Management of Public Heritage. CASE Study: Algeciras Market Hall

2021 ◽  
Vol 11 (24) ◽  
pp. 11899
Author(s):  
Ángela Moreno Bazán ◽  
Marcos García Alberti ◽  
Antonio A. Arcos Álvarez ◽  
Rubén Muñoz Pavón ◽  
Adela González Barbado

Building Information Modelling (BIM) is modifying the workflow of the construction field, not only in design and construction stages but also for the management of the facilities. Most advances in academics and industry have focussed on the use of BIM for building. However, the possibilities of the use of three-dimensional information models for the construction and management of public works and civil engineering infrastructure projects (known as CIM) are still a matter of concern, being complex though offering a wider number of possibilities when compared with regular building industry. Moreover, the construction process in comparison with its lifespan represent only a small part of the investments for the use of public works. With this background, the possibilities based on BIM for the maintenance and rehabilitation of public heritage (HCIM) can greatly improve traditional management capabilities. Making best use of BIM and digitalisation for the management of public heritage (HCIM) requires creating tools for documentation, registering and data management to permit the adequate information transfer between the actors involved. Such actors may be experts or not and hold or not skills to use BIM tools. This study proposes the creation of a database to support the regular inspection during the lifespan of the infrastructure and connect it with the three-dimensional information model, serving the latter as an information repository of the whole life of the infrastructure. Such data include damage and causes as well as a description of the pathology and this information is referred to each element, showing all the historic measures taken. In addition, quantification and quotation of the repairs needed can be obtained. Lastly, the study has applied this methodology in Algeciras Market Hall, the notorious rationalist building designed by the engineer Eduardo Torroja and built in 1935. The results shown in this study can be of great interest for both researchers and practice, with an adaptation and innovation of the BIM and HCIM possibilities.

Author(s):  
D. Guler ◽  
T. Yomralioglu

Abstract. Owing to the increasing existence of multistorey buildings and infrastructures in the built environment, there is a need for three-dimensional (3D) land administration systems (LAS). Regarding this, condominium rights in real-estate properties are needed to be represented as 3D for preventing misinterpretations with regards to who is responsible for or has ownership in which parts of the buildings. Digitalizing the public services appears in current strategies of governments and administrations since it contributes to transparency, speed, and accurateness in the processes. Building permitting that contains obtaining the occupancy permit is a vital one of these public services. With the even-increasing adaptation of Building Information Modelling (BIM), a whole raft of Building Information Models (BIMs) are created to use in digital building permitting. Thus, a significant opportunity for 3D delineation of condominium rights comes out of the reuse of these BIMs, especially their Industry Foundation Classes (IFC) data. In this sense, this paper puts forward an approach that includes developing the conceptual model to depict condominium rights and linking that model with the IFC schema. The applicability of the approach is demonstrated by using a floor of a simple building. The study shows that IFC-based representation of condominium rights can be beneficial for the transition to 3D LAS in Turkey.


Author(s):  
Umit Isikdag ◽  
Jason Underwood ◽  
Murat Kuruoglu ◽  
Alias Abdul-Rahman

In the near future Building Information Modelling will be applied in different areas of the AEC industry. Building Information Models (BIMs) will be used as resources to enable interoperability of software and ‘Building Information Modelling’ based Integrated Project Delivery will be realised as a common process of managing a project over a single shared information backbone. Thus, facilitating the collaborative use of shared BIMs is becoming important in parallel with the industrial demand in the field. Some urban management tasks such as disaster management, delivery of goods and services, and cityscape visualisation are managed by using Geospatial Information Systems as the current state-of-art, as the tasks in these processes require a high level and volume of integrated geospatial information. Several of these tasks such as fire response management require detailed geometric and semantic information about buildings in the form of geospatial information, while tasks such as visualisation of the urban fabric might require less (geometric and semantic) information. Today service-oriented architectures are becoming more popular in terms of enabling integration and collaboration over distributed environments. In this context, this short chapter presents an enhancement for a BIM Web Service pattern (i.e. RESTful BIM) that will help in facilitating information transfer from Building Information Models into the geospatial environment. The chapter starts with the background section later provides a review on the RESTful BIM pattern. Geospatial Views that can be developed for the RESTFul BIM will be elaborated on later in the chapter.


2019 ◽  
Vol 8 (11) ◽  
pp. 499 ◽  
Author(s):  
Olfat ◽  
Atazadeh ◽  
Shojaei ◽  
Rajabifard

Cities are facing dramatic challenges due to population growth and the massive development of high-rises and complex structures, both above and below the ground surface. Decision-makers require access to an efficient land and property information system, which is digital, three-dimensional (3D), spatially accurate, and dynamic containing interests in land (rights, restrictions and responsibilities—RRRs) to manage the legal and physical complexities of urban environments. However, at present, building subdivision workflows only support the two-dimensional (2D) building subdivision plans in PDF or image formats. These workflows result in a number of issues, such as the plan preparation being complex, the examination process being labor intensive and requiring technical expertise, information not being easily reusable by all subdivision stakeholders, queries, analyses, and decision-making being inefficient, and the RRRs interpretation being difficult. The aim of this research is to explore the potential of using Building Information Modelling (BIM) and its open standards to support the building subdivision workflows. The research that is presented in this paper proposes a BIM-driven building subdivision workflow, evaluated through a case study in the state of Victoria, Australia. The results of the study confirmed that the proposed workflow could provide a feasible integrated mechanism for stakeholders to share, document, visualize, analyze, interpret, and reuse 3D digital cadastral data over the lifespan of a building subdivision project.


2020 ◽  
Author(s):  
Kliment Ivanov

Nowadays the technology is often ahead of its implementation in the practice. Two novel technologies have affected the field of conservation and documentation of cultural and historic heritage and await their proper mutual integration. They are the 3D photogrammetric surveying and the Building Information Modelling (BIM). This research proposes a methodology for producing a complete and precise 3D Building Information Model from a point cloud, obtained via a 3D photogrammetric survey. An existing traditional house in Bulgaria is used as a case study. The aims were to optimise the process and to minimise the large number of software, used in the conventional workflow. They were achieved using only one application - ArchiCAD version 22. The complete BIM was later used for producing 3D artistic visualisations and for an interactive 3D web presentation. This paper describes the methodology and the software needed, discussing the techniques and the results.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 325-348
Author(s):  
Kane Whitlock ◽  
Fonbeyin Henry Abanda ◽  
Marcelline Blanche Manjia ◽  
Chrispin Pettang ◽  
George Elambo Nkeng

This study presents an investigation into the extent to which emerging building information modelling (BIM) can be applied to construction logistics management (CLM). Given the specialist nature of the domains, the study employed an in-depth qualitative interview, whereby six experts were interrogated about their experiences of BIM for CLM. The study found the main applications of BIM on CLM to be the creation of three-dimensional (3D) site layout plans and four-dimensional (4D) coordination of site processes and common user plant, updating the 4D logistics plan as the project progressed and collaboration in BIM-based logistics coordination. Furthermore, there was a consensus amongst interviewees on improvement in site safety, comprehension of logistics information, efficiency on site, and effectiveness of layout planning as the main benefits. Lastly, the lack of training with implications on understanding was one of the main barriers to applying BIM to CLM. The findings from this study have the potential to stimulate the uptake of BIM by construction logistics practitioners. By so doing, the performance construction project delivery can be improved, and waste can be minimised or eliminated.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 323
Author(s):  
Vachara Peansupap ◽  
Pisal Nov ◽  
Tanit Tongthong

The kingpost was a vertical element that was used to support the structural strut in the deep excavation. The structural kingpost was commonly arranged by experienced engineers who used two-dimensional construction drawings. Thus, it was still time-consuming and error-prone. Currently, an available construction program has been developed to arrange the structural kingpost by identifying the clash problems in the 3D environment. However, they have a limitation for detecting the clash that was unable to visualize the concurrent clashes between kingpost and many underground structures. Then, the engineer cannot see all the clash incidents with each kingpost and move the kingpost to avoid the clashes successfully. Since the kingpost arrangement was still an inefficient practice that was limited in the visualization aspect, this research used engineering knowledge and advanced construction technology to detect and solve the clashes between kingposts and underground structures. The methodology used engineering knowledge of kingpost arrangement to develop the system modules by using a rule-based approach. Then, these modules were developed into the system by using visual programming of Building Information Modelling (BIM). To test the system, an underground structure from building construction was selected as a case study to apply the developed system. Finally, the finding of this study could overcome human judgment by providing less interaction in the kingpost arrangement and visualization improvement of clash occurrences in the 3D model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Hemalattha ◽  
R. Vidjeapriya

PurposeThis study aims to develop a framework for optimizing the spatial requirements of the equipment in a construction site using a geographic information system (GIS).Design/methodology/approachAn ongoing construction project, an existing thermal powerplant in India, is considered to be the case study, and the corresponding construction activities were scheduled. The equipment spaces were defined for the scheduled activities in building information modelling (BIM), which was further imported to GIS to define the topology rules, validate and optimize the spatial requirements. The BIM simulates the indoor environment, which includes the actual structure being constructed, and the GIS helps in modelling the outdoor environment, which includes the existing structures, temporary facilitates, topography of the site, etc.; thus, this study incorporates the knowledge of BIM in a geospatial environment to obtain optimized equipment spaces for various activities.FindingsSpace in construction projects is to be considered as a resource as well as a constraint, which is to be modelled and planned according to the requirements. The integration of BIM and GIS for equipment space planning will enable precise identification of the errors in the equipment spaces defined and also result in fewer errors as possible. The integration has also eased the process of assigning the topology rules and validating the same, which otherwise is a tedious process.Originality/valueThe workspace for each activity will include the space of the equipment. But, in most of the previous works of workspace planning, only the labour space is considered, and the conflicts and congestions occurring due to the equipment were neglected. The planning of equipment spaces cannot be done based only on the indoor environment; it has to be carried out by considering the surroundings and topography of the site, which have not been researched extensively despite its importance.


2021 ◽  
Vol 26 ◽  
pp. 643-656
Author(s):  
Amichai Mitelman ◽  
Ury Gurevich

The topic of Building Information Modelling (BIM) adoption by public organizations has become a central subject of research, and a significant amount of BIM documents, guidelines, and standards have been created to meet different organizational purposes. Compared to the building industry, the application of BIM tools for tunnel project management is lagging far behind. This paper proposes a methodology for integrating BIM tools for conventional tunnelling. A fundamental distinction is made between the tunnel internal architectural domain and the external structural domain. For the former, BIM methodology can be applied similarly to the building industry. For the latter, it is suggested that a BIM model be built according to the essential information generated during tunnelling excavation. The proposed methodology was put to test for an actual tunneling project. A routine was established where the supervisor on behalf of the owner was responsible for gathering and reporting essential data in tabular form. Via REVIT's Application Programming Interface (API), a code was developed so that a BIM model was built and updated automatic to data insertion. Ultimately, the final BIM model allows managing up-to-date qualitative and quantitative information visually. Thus, human understanding and interpretation are enhanced for future uses, such as maintenance, future renovations and project post-analysis.


Sign in / Sign up

Export Citation Format

Share Document