scholarly journals Three-Dimensional Indoor Fire Evacuation Routing

2020 ◽  
Vol 9 (10) ◽  
pp. 558
Author(s):  
Yan Zhou ◽  
Yuling Pang ◽  
Fen Chen ◽  
Yeting Zhang

Traditional indoor navigation algorithms generally only consider the geometrical information of indoor space. However, the environmental information and semantic parameters of a fire are also important for evacuation routing in the case of a fire. It is difficult for traditional indoor navigation algorithms to dynamically find an indoor path when a fire develops. To address this problem, we developed a multi-semantic constrained three-dimensional (3D) indoor fire evacuation routing method that considers multi-dimensional indoor fire scene-related semantics, such as path accessibility, path recognition degree, and fire parameters. Our method enhances the navigation semantics of indoor space by extending the fire-related components of indoor model based on IndoorGML and integrating location semantics of IndoorLocationGML. We also propose quantifiable indoor fire-oriented routing semantics and establish a navigation cost function that evaluates semantic changes during a fire. We designed an indoor routing algorithm with multiple semantic constraints based on the A* algorithm. The indoor routing results were analyzed and compared in simulation experiments. The experimental results showed that the proposed model can remove unusable nodes and edges from the obtained navigation path and provides a safer and more effective evacuation route than traditional algorithms.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3493
Author(s):  
Gahyeon Lim ◽  
Nakju Doh

Remarkable progress in the development of modeling methods for indoor spaces has been made in recent years with a focus on the reconstruction of complex environments, such as multi-room and multi-level buildings. Existing methods represent indoor structure models as a combination of several sub-spaces, which are constructed by room segmentation or horizontal slicing approach that divide the multi-room or multi-level building environments into several segments. In this study, we propose an automatic reconstruction method of multi-level indoor spaces with unique models, including inter-room and inter-floor connections from point cloud and trajectory. We construct structural points from registered point cloud and extract piece-wise planar segments from the structural points. Then, a three-dimensional space decomposition is conducted and water-tight meshes are generated with energy minimization using graph cut algorithm. The data term of the energy function is expressed as a difference in visibility between each decomposed space and trajectory. The proposed method allows modeling of indoor spaces in complex environments, such as multi-room, room-less, and multi-level buildings. The performance of the proposed approach is evaluated for seven indoor space datasets.


2011 ◽  
Vol 332-334 ◽  
pp. 539-544
Author(s):  
Xiao Dong Liu ◽  
Xin Qun Feng ◽  
Dong Yang

When room space extends from a simple three-dimensional physical space to a four-dimensional spiritual space, when people begin to rise aesthetic appeal to a higher level and emphasize harmony with the environment, the textile works of art at this time were all considered to play one of the most important evolutional roles. Hanging textiles which featured multi-functional made themselves irreplaceable contents in indoor space. From the application and development view of hanging textiles, the article emphasizes on the decorative function and application strategies to look forward to continuously improvement of hanging textiles’ application and design levels in indoor space.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Jiafeng Shi ◽  
Jie Shen ◽  
Zdeněk Stachoň ◽  
Yawei Chen

<p><strong>Abstract.</strong> With the increasing number of large buildings and more frequent indoor activities, indoor location-based service has expanded. Due to the complicated internal passages of large public buildings and the three-dimensional interlacing, it is difficult for users to quickly reach the destination, the demand of indoor paths visualization increases. Isikdag (2013), Zhang Shaoping (2017), Huang Kejia (2018) provided navigation services for users based on path planning algorithm. In terms of indoor path visualization, Nossum (2011) proposed a “Tubes” map design method, which superimposed the channel information of different floors on the same plane by simplifying the indoor corridor and the room. Lorenz et al (2013) focused on map perspective (2D/3D) and landmarks, developed and investigated cartographic methods for effective route guidance in indoor environments. Holscher et al (2007) emphasized using the landmark objects at the important decision points of the route in indoor map design. The existing studies mainly focused on two-dimensional plane to visualize the indoor path, lacking the analysis of three-dimensional connectivity in indoor space, which makes the intuitiveness and interactivity of path visualization greatly compromised. Therefore, it is difficult to satisfy the wayfinding requirements of the indoor multi-layer continuous space. In order to solve this problem, this paper aims to study the characteristics of the indoor environment and propose a path visualization method. The following questions are addressed in this study: 1) What are the key characteristics of the indoor environment compared to the outdoor space? 2) How to visualize the indoor paths to satisfy the users’ wayfinding needs?</p>


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 90436-90452 ◽  
Author(s):  
The H. Vu ◽  
Ogbodo Mark Ikechukwu ◽  
Abderazek Ben Abdallah

2018 ◽  
Vol 160 ◽  
pp. 06004
Author(s):  
Zi-Qiang Wang ◽  
He-Gen Xu ◽  
You-Wen Wan

In order to solve the problem of warehouse logistics robots planpath in different scenes, this paper proposes a method based on visual simultaneous localization and mapping (VSLAM) to build grid map of different scenes and use A* algorithm to plan path on the grid map. Firstly, we use VSLAMto reconstruct the environment in three-dimensionally. Secondly, based on the three-dimensional environment data, we calculate the accessibility of each grid to prepare occupied grid map (OGM) for terrain description. Rely on the terrain information, we use the A* algorithm to solve path planning problem. We also optimize the A* algorithm and improve algorithm efficiency. Lastly, we verify the effectiveness and reliability of the proposed method by simulation and experimental results.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Hyo-jin Jung ◽  
Jiyeong Lee

Different indoor representation methods have been studied for their ability to provide indoor location-based services (LBS). Among them, omnidirectional imaging is one of the most typical and simple methods for representing an indoor space. However, a georeferenced omnidirectional image cannot be used for simple attribute searches, spatial queries, and spatial awareness analyses. To perform these functions, topological data are needed to define the features of and spatial relationships among spatial objects including indoor spaces as well as facilities like CCTV cameras considered in patrol service applications. Therefore, this study proposes an indoor space application data model for an indoor patrol service that can implement functions suited to linking indoor space data and service objects. In order to do this, the study presents a method for linking data between omnidirectional images representing indoor spaces and topological data on indoor spaces based on the concept of IndoorGML. Also, we conduct an experimental implementation of the integrated 3D indoor navigation model for patrol service using GIS data. Based on the results, we evaluate the benefits of using such a 3D data fusion method that integrates omnidirectional images with vector-based topological data models based on IndoorGML for providing indoor LBS in built environments.


Author(s):  
Peter Abdo ◽  
Rahil Taghipour ◽  
B. P. Huynh

Abstract Natural ventilation is the process of supplying and removing air through an indoor space by natural means. There are two types of natural ventilation occurring in buildings: winddriven ventilation and buoyancy driven or stack ventilation. The most efficient design for natural ventilation in buildings should implement both types of natural ventilation. Stack ventilation which is temperature induced is driven by buoyancy making it less dependent on wind and its direction. Heat emitted causes a temperature difference between two adjoining volumes of air, the warmer air will have lower density and be more buoyant thus will rise above the cold air creating an upward air stream. Combining the wind driven and the buoyancy driven ventilation will be investigated in this study through the use of a windcatcher natural ventilation system. Stack driven air rises as it leaves the windcatcher and it is replaced with fresh air from outside as it enters through the positively pressured windward side. To achieve this, CFD (computational fluid dynamics) tool is used to simulate the air flow in a three dimensional room fitted with a windcatcher based on the winddriven ventilation alone, buoyancy driven ventilation alone, and combined buoyancy and winddriven ventilation. Different wind speeds between 0 up to 2.5 m/s are applied and the total air flow rate through the windcatcher is investigated with and without temperature of 350 K applied at the windcatcher’s outlet wall. As the wind speed increased the efficiency of the solar windcatcher decreased.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2976 ◽  
Author(s):  
Yunwang Li ◽  
Sumei Dai ◽  
Yong Shi ◽  
Lala Zhao ◽  
Minghua Ding

Computer simulation is an effective means for the research of robot navigation algorithms. In order to implement real-time, three-dimensional, and visual navigation algorithm simulation, a method of algorithm simulation based on secondary development of Unity3D is proposed. With this method, a virtual robot prototype can be created quickly with the imported 3D robot model, virtual joints, and virtual sensors, and then the navigation simulation can be carried out using the virtual prototype with the algorithm script in the virtual environment. Firstly, the scripts of the virtual revolute joint, virtual LiDAR sensors, and terrain environment are written. Secondly, the A* algorithm is improved for navigation in unknown 3D space. Thirdly, taking the Mecanum wheel mobile robot as an example, the 3D robot model is imported into Unity3D, and the virtual joint, sensor, and navigation algorithm scripts are added to the model. Then, the navigation is simulated in static and dynamic environments using a virtual prototype. Finally, the navigation tests of the physical robot are carried out in the physical environment, and the test trajectory is compared with the simulation trajectory. The simulation and test results validate the algorithm simulation method based on the redevelopment of Unity3d, showing that it is feasible, efficient, and flexible.


2013 ◽  
Vol 734-737 ◽  
pp. 2855-2858
Author(s):  
De Wei Zhang

In this paper, we present an approach of three-dimensional human face pose correction with the normal vector alignment algorithm. We detect three feature points on a human face through calculating discrete Gaussian curvature. Then we calculate the three feature points plane of the normal direction. The face pose is corrected from the normal vector direction. This method is small amount of calculation and wide applicability. The experimental results show that the correction effect is good.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3128 ◽  
Author(s):  
Jinyue Zhang ◽  
Jianing Guo ◽  
Haiming Xiong ◽  
Xiangchi Liu ◽  
Daxin Zhang

Many research studies have focused on fire evacuation planning. However, because of the uncertainties in fire development, there is no perfect solution. This research proposes a fire evacuation management framework which takes advantage of an information-rich building information modeling (BIM) model and a Bluetooth low energy (BLE)-based indoor real-time location system (RTLS) to dynamically push personalized evacuation route recommendations and turn-by-turn guidance to the smartphone of a building occupant. The risk score (RS) for each possible route is evaluated as a weighted summation of risk level index values of all risk factors for all segments along the route, and the route with the lowest RS is recommended to the evacuee. The system will automatically re-evaluate all routes every 2 s based on the most updated information, and the evacuee will be notified if a new and safer route becomes available. A case study with two testing scenarios was conducted for a commercial office building in Tianjin, China, in order to verify this framework.


Sign in / Sign up

Export Citation Format

Share Document