A Algorithm of Three-Dimensional Human Face Pose Correction Based on the Normal Vector Alignment

2013 ◽  
Vol 734-737 ◽  
pp. 2855-2858
Author(s):  
De Wei Zhang

In this paper, we present an approach of three-dimensional human face pose correction with the normal vector alignment algorithm. We detect three feature points on a human face through calculating discrete Gaussian curvature. Then we calculate the three feature points plane of the normal direction. The face pose is corrected from the normal vector direction. This method is small amount of calculation and wide applicability. The experimental results show that the correction effect is good.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Limin Xu

Aiming at the face photos of film and television animation, this paper proposes a new fast three-dimensional (3D) face modelling algorithm. First of all, based on the LBF algorithm, this paper proposes a multifeature selection idea to automatically detect multiple features of the face. Secondly, in order to solve the shortcomings of slow training speed while achieving large pose face alignment, the regression-based CNN is selected as the algorithm to achieve fast convergence. Then, due to the influence of various factors, the extracted feature points are not completely correct, and Gabor features are used to screen the matching of feature points. Finally, by analysing the principle of 3DMM 3D face reconstruction, a single-view 3D face reconstruction method based on CNN is proposed. The experimental results show that the algorithm in this paper has good reconstruction performance and real-time performance and can realize the rapid modelling of human face.


2021 ◽  
Vol 9 (7) ◽  
pp. 747
Author(s):  
Chen Chen ◽  
Ying Li

Safe and efficient berthing is essential to ensure maritime transportation and the safety of ships and ports. Three-dimensional (3D) light detection and ranging (LiDAR) can monitor and support ship berthing because it provides abundant target information and offers excellent advantages in measuring accuracy. Hence, a berthing information extraction system has been developed based on 3D LiDAR. Principal component analysis is used to calculate a ship’s heading and the normal vector, and the feature points of the bow and stern are determined. The segments passing through the points are obtained via region growing. The bow and stern are recognized by the similarity of the normal vector of the segments and ship’s heading according to the positions of the ship relative to the berth through visibility analysis. Qualitative and quantitative calculated analyses of the distance, velocity, and approach angle of the dynamic ship’s bow and stern relative to the dock are performed based on the feature points of 3D LiDAR data. A laser scanner, used as the detection unit, efficiently monitored the Ro–Ro ship Ocean Island berthing at Lushun Port in field experiments. On-site applications demonstrated the feasibility and effectiveness of the proposed method for the recognition of dynamic ship target and ensuring safe ship berthing.


2020 ◽  
Vol 2020 (11) ◽  
pp. 267-1-267-8
Author(s):  
Mitchell J.P. van Zuijlen ◽  
Sylvia C. Pont ◽  
Maarten W.A. Wijntjes

The human face is a popular motif in art and depictions of faces can be found throughout history in nearly every culture. Artists have mastered the depiction of faces after employing careful experimentation using the relatively limited means of paints and oils. Many of the results of these experimentations are now available to the scientific domain due to the digitization of large art collections. In this paper we study the depiction of the face throughout history. We used an automated facial detection network to detect a set of 11,659 faces in 15,534 predominately western artworks, from 6 international, digitized art galleries. We analyzed the pose and color of these faces and related those to changes over time and gender differences. We find a number of previously known conventions, such as the convention of depicting the left cheek for females and vice versa for males, as well as unknown conventions, such as the convention of females to be depicted looking slightly down. Our set of faces will be released to the scientific community for further study.


Author(s):  
Reshma P ◽  
Muneer VK ◽  
Muhammed Ilyas P

Face recognition is a challenging task for the researches. It is very useful for personal verification and recognition and also it is very difficult to implement due to all different situation that a human face can be found. This system makes use of the face recognition approach for the computerized attendance marking of students or employees in the room environment without lectures intervention or the employee. This system is very efficient and requires very less maintenance compared to the traditional methods. Among existing methods PCA is the most efficient technique. In this project Holistic based approach is adapted. The system is implemented using MATLAB and provides high accuracy.


2009 ◽  
Vol 8 (3) ◽  
pp. 887-897
Author(s):  
Vishal Paika ◽  
Er. Pankaj Bhambri

The face is the feature which distinguishes a person. Facial appearance is vital for human recognition. It has certain features like forehead, skin, eyes, ears, nose, cheeks, mouth, lip, teeth etc which helps us, humans, to recognize a particular face from millions of faces even after a large span of time and despite large changes in their appearance due to ageing, expression, viewing conditions and distractions such as disfigurement of face, scars, beard or hair style. A face is not merely a set of facial features but is rather but is rather something meaningful in its form.In this paper, depending on the various facial features, a system is designed to recognize them. To reveal the outline of the face, eyes, ears, nose, teeth etc different edge detection techniques have been used. These features are extracted in the term of distance between important feature points. The feature set obtained is then normalized and are feed to artificial neural networks so as to train them for reorganization of facial images.


2004 ◽  
Vol 126 (5) ◽  
pp. 861-870 ◽  
Author(s):  
A. Thakur ◽  
X. Liu ◽  
J. S. Marshall

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.


Author(s):  
Masoud Forsat ◽  
Mohammad Taghipoor ◽  
Masoud Palassi

AbstractThe present research exposes the investigation on three-dimensional modeling of the single and twin metro tunnels for the case of the Tehran metro line. At first, simulation implemented on the comparison of the ground movements in the single and twin tunnels. Then the simulation has been performed on the influence of effective parameters of EPB-TBM on the surface settlements throughout excavation. The overcutting, shield conicity, grouting, and the final lining system modeled and the influence of face supporting pressure, grout injection pressure, as well as the clear distance of the tunnels, has been analyzed. The initial results showed a valid ground settlement behavior. The maximum settlements occurred at the end of the shield tail and it was higher in the single tunnel. The face supporting pressure had more effect on the surface settlement in comparison to the grout injection pressure. By increasing the face pressure in the single tunnel, the place of maximum settlement moved back while the grout pressure is insignificant for decreasing the settlements. Furthermore, the influence of the clear distance in the twin tunnels led to zero after the length of 30 m. Accordingly, for more distances, the tunnels must be examined independently and as two different single tunnels.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Gang Xu ◽  
Guangwei Zhao ◽  
Jing Chen ◽  
Shuqi Wang ◽  
Weichao Shi

The value of the tangential velocity on the Boundary Value Problem (BVP) is inaccurate when comparing the results with analytical solutions by Indirect Boundary Element Method (IBEM), especially at the intersection region where the normal vector is changing rapidly (named nonsmooth boundary). In this study, the singularity of the BVP, which is directly arranged in the center of the surface of the fluid computing domain, is moved outside the computational domain by using the Desingularized Boundary Integral Equation Method (DBIEM). In order to analyze the accuracy of the IBEM/DBIEM and validate the above-mentioned problem, three-dimensional uniform flow over a sphere has been presented. The convergent study of the presented model has been investigated, including desingularized distance in the DBIEM. Then, the numerical results were compared with the analytical solution. It was found that the accuracy of velocity distribution in the flow field has been greatly improved at the intersection region, which has suddenly changed the boundary surface shape of the fluid domain. The conclusions can guide the study on the flow over nonsmooth boundaries by using boundary value method.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Naeem Ratyal ◽  
Imtiaz Ahmad Taj ◽  
Muhammad Sajid ◽  
Anzar Mahmood ◽  
Sohail Razzaq ◽  
...  

Face recognition aims to establish the identity of a person based on facial characteristics and is a challenging problem due to complex nature of the facial manifold. A wide range of face recognition applications are based on classification techniques and a class label is assigned to the test image that belongs to the unknown class. In this paper, a pose invariant deeply learned multiview 3D face recognition approach is proposed and aims to address two problems: face alignment and face recognition through identification and verification setups. The proposed alignment algorithm is capable of handling frontal as well as profile face images. It employs a nose tip heuristic based pose learning approach to estimate acquisition pose of the face followed by coarse to fine nose tip alignment using L2 norm minimization. The whole face is then aligned through transformation using knowledge learned from nose tip alignment. Inspired by the intrinsic facial symmetry of the Left Half Face (LHF) and Right Half Face (RHF), Deeply learned (d) Multi-View Average Half Face (d-MVAHF) features are employed for face identification using deep convolutional neural network (dCNN). For face verification d-MVAHF-Support Vector Machine (d-MVAHF-SVM) approach is employed. The performance of the proposed methodology is demonstrated through extensive experiments performed on four databases: GavabDB, Bosphorus, UMB-DB, and FRGC v2.0. The results show that the proposed approach yields superior performance as compared to existing state-of-the-art methods.


2012 ◽  
Vol 178-181 ◽  
pp. 2373-2377 ◽  
Author(s):  
Wen Tsung Liu ◽  
Yi Yi Li

From the 921 earthquake to the major typhoons, including the Morakot typhoon, they damaged original landscape of rivers in Taiwan. In recent years, it alleged that abutment bridge exposed to the most serious security problems. Because of bridge piers in addition to the face of long-term river erosion, the flood on the pier will produce localized erosion near the bridge. The pier will be due to inadequate bearing capacity, resulting in subsidence, displacement, bridge version accompanied by tilting and even caving. The river erosion of soil around the piers deposits and production of contraction will often reduce the bearing capacity. Therefore, how to accurately estimate the scour depth, calculate piers to withstand water impact and analyses its stability for preventing injuries in the first place is the current pressing issues. In this study, three-dimensional finite element method (FEM) analysis program Plaxis 3D foundation is used. Polaris second bridge is selected for analysis. Based on local scouring of the model and various numerical variable conditions, the parameter of bridge pier is studied.


Sign in / Sign up

Export Citation Format

Share Document