scholarly journals Variation in Dehydration Tolerance, ABA Sensitivity and Related Gene Expression Patterns in D-Genome Progenitor and Synthetic Hexaploid Wheat Lines

2009 ◽  
Vol 10 (6) ◽  
pp. 2733-2751 ◽  
Author(s):  
Yumeto Kurahashi ◽  
Akihiro Terashima ◽  
Shigeo Takumi
2018 ◽  
Vol 19 (12) ◽  
pp. 3749 ◽  
Author(s):  
Ryo Nishijima ◽  
Kentaro Yoshida ◽  
Kohei Sakaguchi ◽  
Shin-ichi Yoshimura ◽  
Kazuhiro Sato ◽  
...  

Common wheat originated from interspecific hybridization between cultivated tetraploid wheat and its wild diploid relative Aegilops tauschii followed by amphidiploidization. This evolutionary process can be reproduced artificially, resulting in synthetic hexaploid wheat lines. Here we performed RNA sequencing (RNA-seq)-based bulked segregant analysis (BSA) using a bi-parental mapping population of two synthetic hexaploid wheat lines that shared identical A and B genomes but included with D-genomes of distinct origins. This analysis permitted identification of D-genome-specific polymorphisms around the Net2 gene, a causative locus to hybrid necrosis. The resulting single nucleotide polymorphisms (SNPs) were classified into homoeologous polymorphisms and D-genome allelic variations, based on the RNA-seq results of a parental tetraploid and two Ae. tauschii accessions. The difference in allele frequency at the D-genome-specific SNP sites between the contrasting bulks (ΔSNP-index) was higher on the target chromosome than on the other chromosomes. Several SNPs with the highest ΔSNP-indices were converted into molecular markers and assigned to the Net2 chromosomal region. These results indicated that RNA-seq-based BSA can be applied efficiently to a synthetic hexaploid wheat population to permit molecular marker development in a specific chromosomal region of the D genome.


iScience ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 102357
Author(s):  
Brenda Morsey ◽  
Meng Niu ◽  
Shetty Ravi Dyavar ◽  
Courtney V. Fletcher ◽  
Benjamin G. Lamberty ◽  
...  

Crop Science ◽  
2001 ◽  
Vol 41 (5) ◽  
pp. 1653-1654 ◽  
Author(s):  
A. Mujeeb‐Kazi ◽  
S. Cano ◽  
V. Rosas ◽  
A. Cortes ◽  
R. Delgado

2008 ◽  
Vol 88 (6) ◽  
pp. 1065-1071 ◽  
Author(s):  
Qijiao Chen ◽  
Lianquan Zhang ◽  
Zhongwei Yuan ◽  
Zehong Yan ◽  
Youliang Zheng ◽  
...  

Due to the high polymorphisms between synthetic hexaploid wheat (SHW) and common wheat, SHW has been widely used in genetic studies. The transferability of simple sequence repeats (SSR) among common wheat and its donor species, Triticum turgidum and Aegilops tauschii, and their SHW suggested the possibility that some SSRs, specific for a single locus in common wheat, might appear in two or more loci in SHWs. This is an important genetic issue when using synthetic hexaploid wheat population and SSR for mapping. However, it is largely ignored and never empirically well verified. The present study addressed this issue by using the well-studied SSR marker Xgwm261 as an example. The Xgwm261 produced a 192 bp fragment specific to chromosome 2D in common wheat Chinese Spring, but generated a 176 bp fragment in the D genome of Ae. tauschii AS60. Chromosomal location and DNA sequence data revealed that the176 bp fragment also donated by 2B chromosome of durum wheat Langdon. These results indicated that although a single 176 bp fragment was appeared in synthetic hexaploid wheat Syn-SAU-5 between Langdon and AS60, the fragment contained two different loci, one from chromosome 2D of AS60 and the other from 2B of Langdon which were confirmed by the segregating analysis of SSR Xgwm261 in 185 plants from a F2 population between Syn-SAU-5 and Chinese Spring. If Xgwm261 in Syn-SAU-5 was considered as a single locus in genetic analysis, distorted segregation or incorrect conclusions would be yielded. A proposed strategy to avoid this problem is to include SHW’s parental T. turgidum and Ae. tauschii in SSR analysis as control for polymorphism detection. Key words: Synthetic hexaploid wheat, microsatellite, segregation distortion, Xgwm261, transferability


Crop Science ◽  
2012 ◽  
Vol 52 (2) ◽  
pp. 752-763 ◽  
Author(s):  
Guo Tai Yu ◽  
Tao Wang ◽  
Kirk M. Anderson ◽  
Marion O. Harris ◽  
Xiwen Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document