scholarly journals Estrogen Stimulates Proliferation and Differentiation of Neural Stem/Progenitor Cells through Different Signal Transduction Pathways

2010 ◽  
Vol 11 (10) ◽  
pp. 4114-4123 ◽  
Author(s):  
Makiko Okada ◽  
Akihisa Makino ◽  
Mitsunari Nakajima ◽  
Satoshi Okuyama ◽  
Shoei Furukawa ◽  
...  
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3975-3975
Author(s):  
Szabolcs Fatrai ◽  
Djoke van Gosliga ◽  
Lina Han ◽  
Simon M. G. J. Daenen ◽  
Edo Vellenga ◽  
...  

Abstract Abstract 3975 Poster Board III-911 In human hematopoietic malignancies, Ras mutations are frequently present in monocytic and T-cell leukemias. In this study we investigated KRAS G12V-induced phenotypes in human stem and progenitor cells and identified signal transduction pathways that are involved. Using a retroviral expression system, KRAS G12V was introduced to human CD34+ cord blood (CB) cells and proliferation, differentiation and stem cell/progenitor frequencies were evaluated. Overexpression of constitutively active KRAS G12V induced a strong increase in cell expansion over 5-fold in MS5 bone marrow stromal cocultures as well as in cytokine-driven liquid cultures, which coincided with increased early cobblestone formation and induction of monocytic differentiation. Erythroid progenitors were greatly reduced by introduction of KRAS G12V and Q-PCR analysis revealed that expression of PU.1 was increased in conjunction with reduced GATA1 expression in KRAS G12V cells. Progenitor frequencies were increased 6-fold in KRAS-transduced cells within 1 week after plating on MS5. By week three progenitors were exhausted and KRAS-transduced cells were terminally differentiated into monocytes/macrophages. These results were in line with the strong reduction in LTC-IC frequencies at week 5, indicating that also the stem cell pool was exhausted. Intriguingly, when KRAS G12V-transduced cells were cocultured with non-transduced CB CD34+ cells, we observed that the non-transduced cells also displayed a strong growth advantage, coinciding with enhanced early cobblestone formation. Furthermore, the addition of conditioned medium from KRAS G12V-transduced cells grown on MS5 to non-transduced CB cells induced a strong growth advantage and formation of early CAFCs. These observations indicate that, besides intrinsic pathways, secreted factor(s) play an important role in the phenotypes induced by KRAS G12V in human CB CD34+ cells. Current studies include mass-spectroscopy analysis of the secretome of KRAS G12V-transduced CB CD34+ cells to identify the factor(s) that are involved. In order to elucidate signal transduction pathways that mediate KRAS G12V-induced phenotypes, Western-blot analysis was performed. These experiments revealed an increase in phospho-ERK1/2, phospho-p38 and phospho- STAT5 (Y694) levels in KRAS-transduced cells, whereas phospho-JNK was not induced and phospho-C/EBPa (S21) levels were slightly reduced. Induction of STAT5 Y649 phosphorylation by KRAS G12V was confirmed by intracellular phosphoFACS analysis, whereby both in HSCs as well as in more committed MPPs KRAS-induced phosphorylation of STAT5 was observed. KRAS-transduced cells did not show GM-CSF hypersensitivity in any measured cell population upon activation. Inhibition of the ERK/MAPK pathway using the MEK inhibitor U0126 resulted in strongly reduced expansion in MS5 cocultures, whereby both intrinsically induced proliferation as well as proliferation induced via secreted factor(s) were impaired. KRAS G12V-induced monocytic differentiation was not significantly affected by MEK inhibition. While inhibition of the JNK pathway hardly affected proliferation and differentiation of KRAS G12V cells, inhibition of the p38 pathway using SB203580 inhibitor impaired both proliferation and differentiation. When KRAS G12V-transduced cells were cocultured with non-transduced CB CD34+ cells, inhibition of p38 predominantly affected the transduced cells but not the non-transduced cells, suggesting that the p38 pathway particularly mediates intrinsic phenotypes imposed by KRAS G12V. In conclusion, we show that overexpression of oncogenic KRAS G12V in human CD34+ cells enhances proliferation and initiates monocytic differentiation via intrinsic and extrinsic pathways. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 29 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Makiko OKADA ◽  
Koichi MURASE ◽  
Akihisa MAKINO ◽  
Mitsunari NAKAJIMA ◽  
Teppei KAKU ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Huihui Wang ◽  
Chengliang Zhou ◽  
Min Hou ◽  
Hefeng Huang ◽  
Yun Sun

High maternal estradiol is reported to induce metabolic disorders by modulating hypothalamic gene expression in offspring. Since neurogenesis plays a crucial role during hypothalamus development, we explored whether prenatal high estradiol exposure (HE) affects proliferation and differentiation of fetal hypothalamic neural stem/progenitor cells (NSC/NPCs) in mice and performed RNA sequencing to identify the critical genes involved. NSC/NPCs in HE mice presented attenuated cell proliferation but increased neuronal differentiation in vitro compared with control (NC) cells. Gene set enrichment analysis of mRNA profiles indicated that genes downregulated in HE NSC/NPCs were enriched in neurogenesis-related Gene Ontology (GO) terms, while genes upregulated in HE NSC/NPCs were enriched in response to estradiol. Protein-protein interaction analysis of genes with core enrichment in GO terms of neurogenesis and response to estradiol identified 10 Hub mRNAs, among which three were potentially correlated with six differentially expressed (DE) lncRNAs based on lncRNA profiling and co-expression analysis. These findings offer important insights into developmental modifications in hypothalamic NSC/NPCs and may provide new clues for further investigation on maternal environment programmed neural development disorders.


Sign in / Sign up

Export Citation Format

Share Document