scholarly journals The Mechanism of Melatonin and Its Receptor MT2 Involved in the Development of Bovine Granulosa Cells

2018 ◽  
Vol 19 (7) ◽  
pp. 2028 ◽  
Author(s):  
Shujuan Wang ◽  
Wenju Liu ◽  
Xunsheng Pang ◽  
Sifa Dai ◽  
Guodong Liu

Ovarian granulosa cells (GCs) are a critical approach to investigate the mechanism of gene regulation during folliculogenesis. The objective of this study was to investigate the role of MT2 in bovine GCs, and assess whether MT2 silencing affected GCs response to melatonin. We found that MT2 silencing significantly decreased the secretion of progesterone and estradiol, and increased the concentration of inhibin B and activin B. To further reveal the regulatory mechanism of MT2 silencing on steroids synthesis, it was found that the expression of CYP19A1 and CYP11A1 enzymes (steroid hormone synthesis) were down-regulated, while genes related to hormonal synthesis (StAR, RUNX2, INHA and INHBB) were up-regulated without affecting the expression of INHBA, suggesting that MT2 silencing may regulate hormone abundance. Furthermore, MT2 silencing significantly increased the expression of TGFBR3 and BMP6, and decreased the expression of LHR and DNMT1A without significant difference in the expression of FSHR and EGFR. In addition, MT2 silencing didn’t affect the effect of melatonin on increasing the expression of DNMT1A, EGFR, INHBA and LHR, and progesterone level, or decreasing INHA, TGFBR3 and StAR expression, and production of inhibin B. Moreover, MT2 silencing could disrupt the role of melatonin in decreasing the FSHR, INHBB and BMP6 expression, and activin B secretion. In conclusion, these results reveal that melatonin and MT2 are essential regulator of bovine GCs function by modulating reproduction-related genes expression, hormones secretion and other regulators of folliculogenesis.

2021 ◽  
Vol 165 ◽  
pp. 92-98
Author(s):  
Lu Zhu ◽  
Jing Jing ◽  
Shuaiqi Qin ◽  
Qi Zheng ◽  
Jiani Lu ◽  
...  

2019 ◽  
Vol 54 (5) ◽  
pp. 741-749 ◽  
Author(s):  
Dejun Xu ◽  
Huanshan He ◽  
Xiaohan Jiang ◽  
Lulu Yang ◽  
Dinbang Liu ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1770
Author(s):  
Guohua Song ◽  
Yixuan Jiang ◽  
Yaling Wang ◽  
Mingkun Song ◽  
Xuanmin Niu ◽  
...  

Cathepsin S (CTSS) is a member of cysteine protease family. Although many studies have demonstrated the vital role of CTSS in many physiological and pathological processes including tumor growth, angiogenesis and metastasis, the function of CTSS in the development of rabbit granulosa cells (GCS) remains unknown. To address this question, we isolated rabbit GCS and explored the regulatory function of the CTSS gene in cell proliferation and apoptosis. CTSS overexpression significantly promoted the secretion of progesterone (P4) and estrogen (E2) by increasing the expression of STAR and CYP19A1 (p < 0.05). We also found that overexpression of CTSS increased GCS proliferation by up-regulating the expression of proliferation related gene (PCNA) and anti-apoptotic gene (BCL2). Cell apoptosis was markedly decreased by CTSS activation (p < 0.05). In contrast, CTSS knockdown significantly decreased the secretion of P4 and E2 and the proliferation of rabbit GCS, while increasing the apoptosis of rabbit GCS. Taken together, our results highlight the important role of CTSS in regulating hormone secretion, cell proliferation, and apoptosis in rabbit GCS. These results might provide a basis for better understanding the molecular mechanism of rabbit reproduction.


2020 ◽  
Author(s):  
Xuan Luo ◽  
Hui Liu ◽  
Hongzhou Guo ◽  
Longjie Sun ◽  
Kemian Gou ◽  
...  

Abstract Background: V-raf-leukemia viral oncogene 1 (RAF1) kinase is the key factor in extracellular signal regulated pathway, which transmits signals to the downstream extracellular regulated protein kinases (ERK). Regulatory function of RAF1 has been proved to mediate steroid hormone synthesis, which played an essential physiological function in reproduction and development. Whether RAF1 takes part in the signaling events of gonadotropic hormones follicle-stimulating hormone (FSH) in ovarian is unknown.Results: We found that RAF1 as downstream molecule mediates the FSH signaling pathway to stimulate estradiol (E2) synthesis and secretion in mouse ovarian granulosa cells (GCs). The expression of RAF1 is induced by FSH and the production of E2 is increased in the serum and primary ovarian GCs supernatant, the process of which is blocked by treating with RAF1 inhibitor (N-(2-Methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3(trifluoromethyl) benzamide, RAF709). Inhibition of RAF1 activity by RAF709 decreased ERK phosphorylation, and suppressed the expression of cytochrome P450 family 19 subfamily a member 1 (CYP19A1) which is a major rate-limiting enzyme to participate in the last step of E2 biosynthesis. Conclusion: Our results suggest that RAF1 play a pivotal mediating roles toward E2 production in FSH signaling pathway by inducing the phosphorylation of ERK and promoting the process of estradiol synthesis. RAF1 may be a potential and effective factor to regulate the function of the female mouse reproductive system.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 260 ◽  
Author(s):  
Xinling Wang ◽  
Chengmin Li ◽  
Yiru Wang ◽  
Lian Li ◽  
Zhaoyu Han ◽  
...  

Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) is an E3 ligase of ubiquitin fold modifier 1 (UFM1), which can act together with its target protein to inhibit the apoptosis of cells. Lipopolysaccharides (LPS) can affect the ovarian health of female animals by affecting the apoptosis of ovarian granulosa cells. The physiological function of UFL1 on the apoptosis of bovine (ovarian) granulosa cells (bGCs) remains unclear; therefore, we focused on the modulating effect of UFL1 on the regulation of LPS-induced apoptosis in ovarian granulosa cells. Our study found that UFL1 was expressed in both the nucleus and cytoplasm of bGCs. The results here demonstrated that LPS caused a significant increase in the apoptosis level of bGCs in cows, and also dramatically increased the expression of UFL1. Furthermore, we found that UFL1 depletion caused a significant increase in apoptosis (increased the expression of BAX/BCL-2 and the activity of caspase-3). Conversely, the overexpression of UFL1 relieved the LPS-induced apoptosis. In order to assess whether the inhibition of bGCs apoptosis involved in the nuclear factor-κB (NF-κB) signaling pathway resulted from UFL1, we detected the expression of NF-κB p-p65. LPS treatment resulted in a significant upregulation in the protein concentration of NF-κB p-p65, and knockdown of UFL1 further increased the phosphorylation of NF-κB p65, while UFL1 overexpression significantly inhibited the expression of NF-κB p-p65. Collectively, UFL1 could suppress LPS-induced apoptosis in cow ovarian granulosa cells, likely via the NF-κB pathway. These results identify a novel role of UFL1 in the modulation of bGC apoptosis, which may be a potential signaling target to improve the reproductive health of dairy cows.


2019 ◽  
Vol 10 ◽  
Author(s):  
Jiajie Tu ◽  
Albert Hoi-Hung Cheung ◽  
Clement Leung-Kwok Chan ◽  
Wai-Yee Chan

Sign in / Sign up

Export Citation Format

Share Document