scholarly journals UFL1 Alleviates LPS-Induced Apoptosis by Regulating the NF-κB Signaling Pathway in Bovine Ovarian Granulosa Cells

Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 260 ◽  
Author(s):  
Xinling Wang ◽  
Chengmin Li ◽  
Yiru Wang ◽  
Lian Li ◽  
Zhaoyu Han ◽  
...  

Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) is an E3 ligase of ubiquitin fold modifier 1 (UFM1), which can act together with its target protein to inhibit the apoptosis of cells. Lipopolysaccharides (LPS) can affect the ovarian health of female animals by affecting the apoptosis of ovarian granulosa cells. The physiological function of UFL1 on the apoptosis of bovine (ovarian) granulosa cells (bGCs) remains unclear; therefore, we focused on the modulating effect of UFL1 on the regulation of LPS-induced apoptosis in ovarian granulosa cells. Our study found that UFL1 was expressed in both the nucleus and cytoplasm of bGCs. The results here demonstrated that LPS caused a significant increase in the apoptosis level of bGCs in cows, and also dramatically increased the expression of UFL1. Furthermore, we found that UFL1 depletion caused a significant increase in apoptosis (increased the expression of BAX/BCL-2 and the activity of caspase-3). Conversely, the overexpression of UFL1 relieved the LPS-induced apoptosis. In order to assess whether the inhibition of bGCs apoptosis involved in the nuclear factor-κB (NF-κB) signaling pathway resulted from UFL1, we detected the expression of NF-κB p-p65. LPS treatment resulted in a significant upregulation in the protein concentration of NF-κB p-p65, and knockdown of UFL1 further increased the phosphorylation of NF-κB p65, while UFL1 overexpression significantly inhibited the expression of NF-κB p-p65. Collectively, UFL1 could suppress LPS-induced apoptosis in cow ovarian granulosa cells, likely via the NF-κB pathway. These results identify a novel role of UFL1 in the modulation of bGC apoptosis, which may be a potential signaling target to improve the reproductive health of dairy cows.

2021 ◽  
Author(s):  
Huijiao Fu ◽  
Xuzi Cai ◽  
Qiwen Liu ◽  
Wei Yang ◽  
xuefeng wang

Abstract Background: Apoptosis of ovarian granulosa cells (GCs) is a sign of follicular atresia. This study aimed to explore the role and mechanism of signal peptide, CUB domain, epidermal growth factor-like protein1 (SCUBE1) in protecting GCs from apoptosis induced by hydrogen peroxide (H2O2). Methods: Firstly, the expression of SCUBE1 on the ovaries of humans and mice was analyzed by qRT-PCR, western blot and immunohistochemistry. Subsequently, the H2O2 treated GCs were pretreated with SCUBE1 recombinant protein, and their cell viability and proliferation were detected by Cell Counting Kit-8 (CCK-8) assay. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) in the cells were determined by DCFH-DA and rhodamine 123, respectively. The percentage of apoptotic cells was analyzed by flow cytometry after staining with Annexin V/PI. The expression levels of pathway related proteins, such as Bcl-2, Bax, p53, caspase-3, were determined by western blot analysis. Finally, the pathogenicity of SCUBE1 (c.1169C>G, p.P390R) were analyzed based on the software.Results: SCUBE1 was expressed in women of all ages and had the highest expression level in the ovaries in multiple organs and tissues of KM mouse. In vitro cell experiments show that SCUBE1 pretreatment reduced H2O2-induced apoptosis and improved cell viability. SCUBE1 also blocked the production of ROS in cells and improved mitochondrial membrane potential. After SCUBE1 pretreatment, anti-apoptotic protein Bcl-2 expression was upregulated, whereas the expression of the pro-apoptotic proteins Bax, Bax/Bcl-2, Caspase-3, and p53 were downregulated. Analysis of the impact of SCUBE1 (c.1169C >G, p.P390R) mutation from the aspect of mutation pathogenicity; protein stability; and gene haplotype insufficiency, indicated that the p.P390R mutation is significantly pathogenic.Conclusions: This is the first time that the potential role of SCUBE1 in protecting GCs from H2O2-induced damage through the mitochondrial pathways, attributing to POI, is studied. SCUBE1 (c.1169C >G, p.P390R) mutation has significant pathogenicity but the specific harm needs to be confirmed by further studies. Trial registration: Not applicable.


2020 ◽  
Author(s):  
Peihui Ding ◽  
Ding-Ding Ai ◽  
Kai-Xue Lao ◽  
Ying Huang ◽  
Yan Zhang ◽  
...  

Abstract Background Polycystic ovary syndrome is a complex disease related to the endocrine and metabolism. Its specific cause and pathogenesis have not been clear. Nesfatin-1 could not only regulate energy balance and glucose metabolism, but also affect the reproductive system. The Wnt/β-catenin signaling pathway affects follicle development, ovulation, corpus luteum formation, and steroid hormone production. Results Here, we studied the roles of nesfatin-1 and Wnt/β-catenin signaling pathway in the pathogenesis of polycystic ovary syndrome. Firstly, the human primary ovarian granulosa cells in vitro was cultured. The results showed that the apoptosis rate of ovarian granulosa cells in polycystic ovary syndrome patients was significantly higher than that of granular cells in normal people. Moreover, nesfatin-1 and Wnt/β-catenin pathway inhibitor IWR-1could inhibit the expressions of ovarian granulosa cells apoptosis genes and promote their proliferation, as well as nesfatin-1 affected the expressions of foxo3a and its downstream factors. Then, an in vitro culture system for ovarian granulosa cells (OGCs) was established by employing a rat model. The results are the same with those mentioned above. Conclusion This strongly proves that the nesfatin-1 participates in regulating the apoptosis and proliferation of granulosa cells by the Wnt/β-catenin pathway. According to the role of nesfatin-1 and IWR in polycystic ovary syndrome, nesfatin-1 and Wnt/β-catenin pathway can provide a guideline for the diagnosis and treatment of Polycystic ovary syndrome (PCOS).


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Gila Pirzad ◽  
Mahvash Jafari ◽  
Sasan Tavana ◽  
Homayoon Sadrayee ◽  
Saeid Ghavami ◽  
...  

Sulfur mustard (SM) is an alkylating agent that induces apoptosis and necrosis in cells. Fas-Fas ligand (FasL) interaction could induce apoptosis as well. In this study, it was hypothesized that apoptosis might play an important role in the pathogenesis of SM-induced lung injury via Fas-FasL signaling pathway. In a case-control study, Fas and FasL levels, caspase-3 activity and percent of apoptotic cells were measured in bronchoalveolar lavage (BAL) fluid of patients 20 years after exposure to sulfur mustard and compared with the control group. Results show that Fas and FasL levels were significantly higher in BAL fluid cells in patients group compared with the control (P=.001). No significant differences were observed between mild and moderate-severe groups. BAL fluid cells caspase-3 activity was not significantly different among the mild, moderate-severe, and control groups. The data suggest that Fas-FasL-induced apoptosis was impaired in BAL fluid cells of SM-exposed patients which might be one of the initiators of pathogenesis in SM-induced lung injury in these patients.


2020 ◽  
Vol 18 (4) ◽  
pp. 331-336
Author(s):  
Xinrong Li ◽  
Beili Lv ◽  
Haiyan Wang ◽  
Qiaohong Qian

To understand the mechanism underlying Dioscin inhibition of polycystic ovary syndrome, we have examined its effects on ovarian granulosa cells from letrozole-treated rats. To this end, Western blot was utilized to determine changes in the levels of Bcl-2, cleaved caspase-3, caspase-3, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B pathway after Dioscin treatment in letrozole-treated rats. Dioscin ameliorated polycystic ovary syndrome by reducing the serum level of testosterone and increasing progesterone levels. It also inhibited proliferation and induced apoptosis of ovarian granulosa cells in the rat model by decreasing the level of Bcl-2 and elevating cleaved caspase-3. Western blot analysis revealed that Dioscin suppressed the PI3K/Akt pathway by inhibiting p-AKT/AKT. SC79, a p-AKT/AKT activator, reversed the effects of Dioscin on the proliferation and apoptosis of ovarian granulosa cells. In conclusion, Dioscin might present a novel therapeutic opportunity for patients with polycystic ovary syndrome.


2020 ◽  
Author(s):  
Yanyan Yi ◽  
Shuangxiu Wan ◽  
Shaoyu Wang ◽  
Ajab Khan ◽  
Jianhua Guo ◽  
...  

Abstract BackgroundThe zearalenone (ZEA) contained in the animal grain feeds is produced by Fusarium fungi and this toxin targets ovarian granulosa cells (GCs) to cause reproductive disorders in female animals. Current research on drugs that can rescue ZEA-induced GCs damage is limited. The purpose of this study was to explore the effect of scutellarin (Scu) on ZEA-induced apoptosis of mouse ovarian GCs and its mechanism.ResultsIn one set of experiments, the primary cultured mouse ovarian GCs were co-treated with ZEA and scutellarin for 24 h. The results showed that Scu significantly alleviated ZEA-induced cell damage, restored cell cycle arrest, and inhibited apoptosis by reducing the ratio of cleaved-caspase-3, cleaved-PARP, and Bax/Bcl-2. In other set of experiments, six weeks old mice were intragastrical administered with 40 mg/kg ZEA for 2 h, followed by 100 mg/kg Scu for 3 d. It was shown that Scu inhibited ZEA-induced apoptosis and positive signal expression of cleared-caspase-3 in the ovarian granulosa layer, with the involvement of mitochondrial apoptotic pathway. ConclusionScu attenuated ZEA-induced reproductive toxicity by targeting mouse ovarian GCs, mainly affecting cell cycle phase distribution and apoptosis via mitochondrial apoptotic pathway in vitro and in vivo. These data provide strong evidence that Scu can be further developed as potential new therapeutic drug for preventing or treating reproductive toxicity caused by animal exposure to ZEA found in the grains of animal feeds.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 184
Author(s):  
Jing-Li Tao ◽  
Xuan Zhang ◽  
Jia-Qi Zhou ◽  
Cheng-Yu Li ◽  
Ming-Hui Yang ◽  
...  

In mammalian ovaries, the avascular environment within follicular cavity is supposed to cause hypoxic status in granulosa cells (GCs), leading to apoptotic cell death accompanied by cumulative reactive oxygen species (ROS) production. Melatonin (N-acetyl-5-methoxytryptamine, MT), a broad-spectrum antioxidant that exists in porcine follicle fluid, was suggested to maintain GCs survival under stress conditions. In this study, using the established hypoxic model (1% O2) of cultured porcine GCs, we explored the effect of MT on GCs apoptosis. The results showed that MT restored cell viability and reduced the apoptosis of GCs during hypoxia exposure. In addition, GCs treated with MT exhibited decreased ROS levels and increased expression of antioxidant enzymes including heme oxygenase-1 (HO-1), glutathione S-transferase (GST), superoxide dismutase 1 (SOD1), and catalase (CAT) upon hypoxia incubation. Moreover, the hypoxia-induced expression of cleaved caspase 3, 8, and 9 was significantly inhibited after MT treatment. In contrast, blocking melatonin receptor 2 (MTNR1B) with a competitive antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT) diminished the inhibitory effects of MT on caspase 3 activation. By detecting levels of protein kinase (PKA), a downstream kinase of MTNR1B, we further confirmed the involvement of MT–MTNR1B signaling in mediating GCs protection during hypoxia stress. Together, the present data provide mechanistic evidence suggesting the role of MT in defending GCs from hypoxia-induced apoptosis.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1770
Author(s):  
Guohua Song ◽  
Yixuan Jiang ◽  
Yaling Wang ◽  
Mingkun Song ◽  
Xuanmin Niu ◽  
...  

Cathepsin S (CTSS) is a member of cysteine protease family. Although many studies have demonstrated the vital role of CTSS in many physiological and pathological processes including tumor growth, angiogenesis and metastasis, the function of CTSS in the development of rabbit granulosa cells (GCS) remains unknown. To address this question, we isolated rabbit GCS and explored the regulatory function of the CTSS gene in cell proliferation and apoptosis. CTSS overexpression significantly promoted the secretion of progesterone (P4) and estrogen (E2) by increasing the expression of STAR and CYP19A1 (p < 0.05). We also found that overexpression of CTSS increased GCS proliferation by up-regulating the expression of proliferation related gene (PCNA) and anti-apoptotic gene (BCL2). Cell apoptosis was markedly decreased by CTSS activation (p < 0.05). In contrast, CTSS knockdown significantly decreased the secretion of P4 and E2 and the proliferation of rabbit GCS, while increasing the apoptosis of rabbit GCS. Taken together, our results highlight the important role of CTSS in regulating hormone secretion, cell proliferation, and apoptosis in rabbit GCS. These results might provide a basis for better understanding the molecular mechanism of rabbit reproduction.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 325 ◽  
Author(s):  
Xiaojuan Li ◽  
Yunping Tang ◽  
Fangmiao Yu ◽  
Yu Sun ◽  
Fangfang Huang ◽  
...  

We investigated the antitumor mechanism of Anthopleura anjunae oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.


Sign in / Sign up

Export Citation Format

Share Document