scholarly journals Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage

2018 ◽  
Vol 19 (9) ◽  
pp. 2788 ◽  
Author(s):  
Guang Yang ◽  
Hyenjong Hong ◽  
April Torres ◽  
Kristen Malloy ◽  
Gourav Choudhury ◽  
...  

Humans and nonhuman primates (NHP) are similar in behavior and in physiology, specifically the structure, function, and complexity of the immune system. Thus, NHP models are desirable for pathophysiology and pharmacology/toxicology studies. Furthermore, NHP-derived induced pluripotent stem cells (iPSCs) may enable transformative developmental, translational, or evolutionary studies in a field of inquiry currently hampered by the limited availability of research specimens. NHP-iPSCs may address specific questions that can be studied back and forth between in vitro cellular assays and in vivo experimentations, an investigational process that in most cases cannot be performed on humans because of safety and ethical issues. The use of NHP model systems and cell specific in vitro models is evolving with iPSC-based three-dimensional (3D) cell culture systems and organoids, which may offer reliable in vitro models and reduce the number of animals used in experimental research. IPSCs have the potential to give rise to defined cell types of any organ of the body. However, standards for deriving defined and validated NHP iPSCs are missing. Standards for deriving high-quality iPSC cell lines promote rigorous and replicable scientific research and likewise, validated cell lines reduce variability and discrepancies in results between laboratories. We have derived and validated NHP iPSC lines by confirming their pluripotency and propensity to differentiate into all three germ layers (ectoderm, mesoderm, and endoderm) according to standards and measurable limits for a set of marker genes. The iPSC lines were characterized for their potential to generate neural stem cells and to differentiate into dopaminergic neurons. These iPSC lines are available to the scientific community. NHP-iPSCs fulfill a unique niche in comparative genomics to understand gene regulatory principles underlying emergence of human traits, in infectious disease pathogenesis, in vaccine development, and in immunological barriers in regenerative medicine.

2018 ◽  
Vol 12 ◽  
Author(s):  
Alastair I. Grainger ◽  
Marianne C. King ◽  
David A. Nagel ◽  
H. Rheinallt Parri ◽  
Michael D. Coleman ◽  
...  

2019 ◽  
Vol 140 ◽  
pp. 68-77 ◽  
Author(s):  
Amy Cochrane ◽  
Hugo J. Albers ◽  
Robert Passier ◽  
Christine L. Mummery ◽  
Albert van den Berg ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6124
Author(s):  
Clara Sanjurjo-Rodríguez ◽  
Rocío Castro-Viñuelas ◽  
María Piñeiro-Ramil ◽  
Silvia Rodríguez-Fernández ◽  
Isaac Fuentes-Boquete ◽  
...  

Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of differentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders affecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for effectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and differentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of different types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.


2014 ◽  
Vol 26 (1) ◽  
pp. 210
Author(s):  
A. Gallegos-Cardenas ◽  
K. Wang ◽  
E. T. Jordan ◽  
R. West ◽  
F. D. West ◽  
...  

The generation of pig induced pluripotent stem cells (iPSC) opened the possibility to evaluate autologous neural cell therapy as a viable option for human patients. However, it is necessary to demonstrate whether pig iPSC are capable of in vitro neural differentiation similar to human iPSC in order to perform in vitro and in vivo comparative studies. Multiple laboratories have generated pig iPSC that have been characterised using pluripotent markers such as SSEA4 and POU5F1. However, correlations of pluripotent marker expression profiles among iPSC lines and their neural differentiation potential has not been fully explored. Because neural rosettes (NR) are composed of neural stem cells, our goal was to demonstrate that NR from pig iPSC can be generated, isolated, and expanded in vitro from multiple porcine iPSC lines similar to human iPSC and that the level of pluripotency in the starting porcine iPSC population (POUF51 and SSEA4 expression) could influence NRs development. Three lines of pig iPSC L1, L2, and L3 were cultured on matrigel-coated plates in mTeSR1 medium (Stemcell Technologies Inc., Vancouver, BC, Canada) and passaged every 3 to 4 days. For neural induction (NI), pig iPSC were disaggregated using dispase and plated. After 24 h, cells were maintained in N2 media [77% DMEM/F12, 10 ng mL–1 bovine fibroblast growth factor (bFGF), and 1X N2] for 15 days. To evaluate the differentiation potential to neuron and glial cells, NR were isolated, expanded in vitro and cultured for three weeks in AB2 medium (AB2, 1X ANS, and 2 mM L-Glutamine). Immunostaining assays were performed to determine pluripotent (POU5F1 and SSEA4), tight junction (ZO1), neural epithelial (Pax6 and Sox1), neuron (Tuj1), astrocyte (GFAP), and oligodendrocyte (O4) marker expression. Line L2 (POU5F1high and SSEA4low) showed a high potential to form NR (6.3.5%, P < 0.05) in comparison to the other 2 lines L1 (POU5F1low and SSEA4low) and L3 (POU5F1low and SSEA4high) upon NI. The NR immunocytochemistry results from Line L2 showed the presence of Pax6+ and Sox1– NRs cells at day 9 post-neural induction and that ZO1 started to localise at the apical border of NRs. At day 13, NRs cells were Pax6+ and Sox1+, and ZO1 was localised to the lumen of NR. After isolation and culture in vitro, NR cells expressed transcription factors PLAGL1, DACH1, and OTX2 through 2 passages, but were not detected in later passages. However, rosette cytoarchitecture was present up until passage 7 and were still Pax6+/Sox1+. NRs at passage 2 were cryopreserved and upon thaw showed normal NR morphology and were Pax6+/Sox1+. To characterise the plasticity of NRs, cells were differentiated. Tuj1 expression was predominant after differentiation indicating a bias towards a neuron phenotype. These results demonstrate that L2 pig iPSC (POUF51high and SSEA4low) have a high potential to form NR and neural differentiation parallels human iPSC neurulation events. Porcine iPSC should be considered as a large animal model for determining the safety and efficacy of human iPSC neural cell therapies.


2012 ◽  
Vol 70 (7) ◽  
pp. 540-546 ◽  
Author(s):  
Guilherme Lepski

Cell therapies, based on transplantation of immature cells, are being considered as a promising tool in the treatment of neurological disorders. Many efforts are being concentrated on the development of safe and effective stem cell lines. Nevertheless, the neurogenic potential of some cell lines, i.e., the ability to generate mature neurons either in vitro or in vivo, is largely unknown. Recent evidence indicate that this potential might be distinct among different cell lines, therefore limiting their broad use as replacement cells in the central nervous system. Here, we have reviewed the latest advancements regarding the electrophysiological maturation of stem cells, focusing our attention on fetal-derived-, embryonic-, and induced pluripotent stem cells. In summary, a large body of evidence supports the biological safety, high neurogenic potential, and in some diseases probable clinical efficiency related to fetal-derived cells. By contrast, reliable data regarding embryonic and induced pluripotent stem cells are still missing.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Sára Kálmán ◽  
Edit Hathy ◽  
János M. Réthelyi

Neuronal differentiation of induced pluripotent stem cells and direct reprogramming represent powerful methods for modeling the development of neuronsin vitro. Moreover, this approach is also a means for comparing various cellular phenotypes between cell lines originating from healthy and diseased individuals or isogenic cell lines engineered to differ at only one or a few genomic loci. Despite methodological constraints and initial skepticism regarding this approach, the field is expanding at a fast pace. The improvements include the development of new differentiation protocols resulting in selected neuronal populations (e.g., dopaminergic, GABAergic, hippocampal, and cortical), the widespread use of genome editing methods, and single-cell techniques. A major challenge awaitingin vitrodisease modeling is the integration of clinical data in the models, by selection of well characterized clinical populations. Ideally, these models will also demonstrate how different diagnostic categories share overlapping molecular disease mechanisms, but also have unique characteristics. In this review we evaluate studies with regard to the described developments, to demonstrate how differentiation of induced pluripotent stem cells and direct reprogramming can contribute to psychiatry.


Sign in / Sign up

Export Citation Format

Share Document