scholarly journals Versatility of Induced Pluripotent Stem Cells (iPSCs) for Improving the Knowledge on Musculoskeletal Diseases

2020 ◽  
Vol 21 (17) ◽  
pp. 6124
Author(s):  
Clara Sanjurjo-Rodríguez ◽  
Rocío Castro-Viñuelas ◽  
María Piñeiro-Ramil ◽  
Silvia Rodríguez-Fernández ◽  
Isaac Fuentes-Boquete ◽  
...  

Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of differentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders affecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for effectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and differentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of different types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


2021 ◽  
Author(s):  
Dimitrios Voulgaris ◽  
Polyxeni Nikolakopoulou ◽  
Anna Herland

Generating astrocytes from induced pluripotent stem cells has been hampered by either prolonged differentiation -spanning over two months -or by shorter protocols that generate immature astrocytes, devoid of salient inflammation-associated astrocytic traits pivotal for CNS neuropathological modeling. We directed human neural stem cells derived from induced pluripotent stem cells to astrocytic commitment and maturity by orchestrating an astrocytic-tuned culturing environment. In under 28 days, the generated cells express canonical and mature astrocytic markers, denoted by the expression of AQP4 and, remarkably, the expression and functionality of glutamate transporter EAAT2. We also show that this protocol generates astrocytes that encompass traits critical in CNS disease modeling, such as glutathione synthesis and secretion, upregulation of ICAM-1 and a cytokine secretion profile which is on par with primary astrocytes. This protocol generates a multifaceted astrocytic model suitable for CNS in vitro disease modeling and personalized medicine through brain-on-chip technologies.


2017 ◽  
Vol 114 (11) ◽  
pp. E2243-E2252 ◽  
Author(s):  
Marc Ehrlich ◽  
Sabah Mozafari ◽  
Michael Glatza ◽  
Laura Starost ◽  
Sergiy Velychko ◽  
...  

Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4+ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shiRag−/− mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.


2018 ◽  
Vol 19 (9) ◽  
pp. 2788 ◽  
Author(s):  
Guang Yang ◽  
Hyenjong Hong ◽  
April Torres ◽  
Kristen Malloy ◽  
Gourav Choudhury ◽  
...  

Humans and nonhuman primates (NHP) are similar in behavior and in physiology, specifically the structure, function, and complexity of the immune system. Thus, NHP models are desirable for pathophysiology and pharmacology/toxicology studies. Furthermore, NHP-derived induced pluripotent stem cells (iPSCs) may enable transformative developmental, translational, or evolutionary studies in a field of inquiry currently hampered by the limited availability of research specimens. NHP-iPSCs may address specific questions that can be studied back and forth between in vitro cellular assays and in vivo experimentations, an investigational process that in most cases cannot be performed on humans because of safety and ethical issues. The use of NHP model systems and cell specific in vitro models is evolving with iPSC-based three-dimensional (3D) cell culture systems and organoids, which may offer reliable in vitro models and reduce the number of animals used in experimental research. IPSCs have the potential to give rise to defined cell types of any organ of the body. However, standards for deriving defined and validated NHP iPSCs are missing. Standards for deriving high-quality iPSC cell lines promote rigorous and replicable scientific research and likewise, validated cell lines reduce variability and discrepancies in results between laboratories. We have derived and validated NHP iPSC lines by confirming their pluripotency and propensity to differentiate into all three germ layers (ectoderm, mesoderm, and endoderm) according to standards and measurable limits for a set of marker genes. The iPSC lines were characterized for their potential to generate neural stem cells and to differentiate into dopaminergic neurons. These iPSC lines are available to the scientific community. NHP-iPSCs fulfill a unique niche in comparative genomics to understand gene regulatory principles underlying emergence of human traits, in infectious disease pathogenesis, in vaccine development, and in immunological barriers in regenerative medicine.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2465
Author(s):  
Sevda Gheibi ◽  
Tania Singh ◽  
Joao Paulo M. C. M. da Cunha ◽  
Malin Fex ◽  
Hindrik Mulder

Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.


Genetika ◽  
2021 ◽  
Vol 53 (2) ◽  
pp. 813-823
Author(s):  
Sanja Rascanin ◽  
Mirjana Jovanovic ◽  
Dejan Stevanovic ◽  
Nemanja Rancic

The discovery of Induced Pluripotent Stem Cells (iPSCs) opened the possibilities for reprogramming adult somatic cells back to a pluripotent state in vitro by inducing a forced expression of specific transcription factors. Thus, iPSCs might have potential application in regenerative medicine, transplantation, avoidance of tissue rejection, disease modeling, and drug testing. Because of apparent ethical issues connected with donation and derivation of biomaterials, iPSCs are considered as a research alternative to ethically highly disputed Embryonic Stem Cells (ESCs). Objective: The aim of this paper was to describe the development of a questionnaire for evaluating information, knowledge, and attitudes on donation, storage, and application of iPSCs (i.e., the QIPSC). We performed a prospective qualitative study based on the development, validation and reliability testing of the QIPSC. The study included 122 respondents and the final version of the QIPSC with 34 items. The reliability analysis for part of information and knowledge of respondents according to iPSCs was then performed with the questions included in this two-component model and obtained a Cronbach's alpha value of 0.783 and 0.870, respectively. It has been shown that the range of correct answers to questions in part of knowledge of respondents according to iPSCs was from 17.2-63.1%. The results of our study show that the QIPSC was a unique, reliable, and valid questionnaire for assessing the level of information, knowledge, and attitudes on donation, storage, and application of iPSCs.


2020 ◽  
Vol 2020 ◽  
pp. 1-24 ◽  
Author(s):  
Israa Ahmed Radwan ◽  
Dina Rady ◽  
Marwa M. S. Abbass ◽  
Sara El Moshy ◽  
Nermeen AbuBakr ◽  
...  

Cell-based therapies currently represent the state of art for tissue regenerative treatment approaches for various diseases and disorders. Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells, using vectors carrying definite transcription factors, have manifested a breakthrough in regenerative medicine, relying on their pluripotent nature and ease of generation in large amounts from various dental and nondental tissues. In addition to their potential applications in regenerative medicine and dentistry, iPSCs can also be used in disease modeling and drug testing for personalized medicine. The current review discusses various techniques for the production of iPSC-derived osteogenic and odontogenic progenitors, the therapeutic applications of iPSCs, and their regenerative potential in vivo and in vitro. Through the present review, we aim to explore the potential applications of iPSCs in dental and nondental tissue regeneration and to highlight different protocols used for the generation of different tissues and cell lines from iPSCs.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Sára Kálmán ◽  
Edit Hathy ◽  
János M. Réthelyi

Neuronal differentiation of induced pluripotent stem cells and direct reprogramming represent powerful methods for modeling the development of neuronsin vitro. Moreover, this approach is also a means for comparing various cellular phenotypes between cell lines originating from healthy and diseased individuals or isogenic cell lines engineered to differ at only one or a few genomic loci. Despite methodological constraints and initial skepticism regarding this approach, the field is expanding at a fast pace. The improvements include the development of new differentiation protocols resulting in selected neuronal populations (e.g., dopaminergic, GABAergic, hippocampal, and cortical), the widespread use of genome editing methods, and single-cell techniques. A major challenge awaitingin vitrodisease modeling is the integration of clinical data in the models, by selection of well characterized clinical populations. Ideally, these models will also demonstrate how different diagnostic categories share overlapping molecular disease mechanisms, but also have unique characteristics. In this review we evaluate studies with regard to the described developments, to demonstrate how differentiation of induced pluripotent stem cells and direct reprogramming can contribute to psychiatry.


2018 ◽  
Vol 27 (11) ◽  
pp. 1588-1602 ◽  
Author(s):  
Chia-Yu Chang ◽  
Hsiao-Chien Ting ◽  
Ching-Ann Liu ◽  
Hong-Lin Su ◽  
Tzyy-Wen Chiou ◽  
...  

Many neurodegenerative diseases are progressive, complex diseases without clear mechanisms or effective treatments. To study the mechanisms underlying these diseases and to develop treatment strategies, a reliable in vitro modeling system is critical. Induced pluripotent stem cells (iPSCs) have the ability to self-renew and possess the differentiation potential to become any kind of adult cell; thus, they may serve as a powerful material for disease modeling. Indeed, patient cell-derived iPSCs can differentiate into specific cell lineages that display the appropriate disease phenotypes and vulnerabilities. In this review, we highlight neuronal differentiation methods and the current development of iPSC-based neurodegenerative disease modeling tools for mechanism study and drug screening, with a discussion of the challenges and future inspiration for application.


Sign in / Sign up

Export Citation Format

Share Document