scholarly journals Photothermal Off-Resonance Tapping for Rapid and Gentle Atomic Force Imaging of Live Cells

2018 ◽  
Vol 19 (10) ◽  
pp. 2984 ◽  
Author(s):  
Adrian Nievergelt ◽  
Charlène Brillard ◽  
Haig Eskandarian ◽  
John McKinney ◽  
Georg Fantner

Imaging living cells by atomic force microscopy (AFM) promises not only high-resolution topographical data, but additionally, mechanical contrast, both of which are not obtainable with other microscopy techniques. Such imaging is however challenging, as cells need to be measured with low interaction forces to prevent either deformation or detachment from the surface. Off-resonance modes which periodically probe the surface have been shown to be advantageous, as they provide excellent force control combined with large amplitudes, which help reduce lateral force interactions. However, the low actuation frequency in traditional off-resonance techniques limits the imaging speed significantly. Using photothermal actuation, we probe the surface by directly actuating the cantilever. Due to the much smaller mass that needs to be actuated, the achievable measurement frequency is increased by two orders of magnitude. Additionally, photothermal off-resonance tapping (PORT) retains the precise force control of conventional off-resonance modes and is therefore well suited to gentle imaging. Here, we show how photothermal off-resonance tapping can be used to study live cells by AFM. As an example of imaging mammalian cells, the initial attachment, as well as long-term detachment, of human thrombocytes is presented. The membrane disrupting effect of the antimicrobial peptide CM-15 is shown on the cell wall of Escherichia coli. Finally, the dissolution of the cell wall of Bacillus subtilis by lysozyme is shown. Taken together, these evolutionarily disparate forms of life exemplify the usefulness of PORT for live cell imaging in a multitude of biological disciplines.

Author(s):  
Adrian P. Nievergelt ◽  
Charlène C.G. Brillard ◽  
Haig A. Eskandarian ◽  
John D. McKinney ◽  
Georg E. Fantner

Imaging living cells by atomic force microscopy (AFM) promises not only high-resolution topographical data, but additionally, mechanical contrast, which are not obtainable with other microscopy techniques. Such imaging is however challenging, as cells need to be measured with low interaction forces to prevent either deformation or detachment from the surface. Off-resonance modes which periodically probe the surface have been shown to be advantageous, as they provide excellent force control combined with large amplitudes, which help reduce lateral force interactions. However, the low actuation frequency in traditional off-resonance techniques limits the imaging speed significantly. Using photothermal actuation, we probe the surface by directly actuating the cantilever. Due to the much smaller mass that needs to be actuated, the achievable measurement frequency is increased by two orders of magnitude. Additionally, photothermal off-resonance tapping retains the precise force control of conventional off-resonance modes and is therefore well suited to gentle imaging. Here we show how photothermal off-resonance tapping can be used to study live cells by AFM. As an example of imaging mammalian cells, the initial attachment, as well as long term detachment of a human thrombocytes are presented. The membrane disrupting effect of the antimicrobial peptide CM-15 is shown on the cell wall of E. coli. Finally, the dissolution of the cell wall of B. subtilis by lysozyme is shown. Taken together, these evolutionarily disparate forms of life exemplify the usefulness of PORT for live cell imaging in a multitude of biological disciplines.


2019 ◽  
Vol 10 ◽  
pp. 617-633 ◽  
Author(s):  
Aaron Mascaro ◽  
Yoichi Miyahara ◽  
Tyler Enright ◽  
Omur E Dagdeviren ◽  
Peter Grütter

Recently, there have been a number of variations of electrostatic force microscopy (EFM) that allow for the measurement of time-varying forces arising from phenomena such as ion transport in battery materials or charge separation in photovoltaic systems. These forces reveal information about dynamic processes happening over nanometer length scales due to the nanometer-sized probe tips used in atomic force microscopy. Here, we review in detail several time-resolved EFM techniques based on non-contact atomic force microscopy, elaborating on their specific limitations and challenges. We also introduce a new experimental technique that can resolve time-varying signals well below the oscillation period of the cantilever and compare and contrast it with those previously established.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yijun Yang ◽  
Kwanlae Kim

AbstractAtomic force microscopy (AFM) is central to investigating the piezoelectric potentials of one-dimensional nanomaterials. The AFM probe is used to deflect individual piezoelectric nanorods and to measure the resultant current. However, the torsion data of AFM probes have not been exploited to elucidate the relationship between the applied mechanical force and resultant current. In this study, the effect of the size of ZnO nanorods on the efficiency of conversion of the applied mechanical force into current was investigated by simultaneously acquiring the conductive AFM and lateral force microscopy signals. The conversion efficiency was calculated based on linear regression analysis of the scatter plot of the data. This method is suitable for determining the conversion efficiencies of all types of freestanding piezoelectric nanomaterials grown under different conditions. A pixel-wise comparison of the current and lateral force images elucidated the mechanism of current generation from dense arrays of ZnO nanorods. The current signals generated from the ZnO nanorods by the AFM probe originated from the piezoelectric and triboelectric effects. The current signals contributed by the triboelectric effect were alleviated by using an AFM probe with a smaller spring constant and reducing the normal force.


2013 ◽  
Vol 56 (9) ◽  
pp. 811-817 ◽  
Author(s):  
Mi Li ◽  
LianQing Liu ◽  
Ning Xi ◽  
YueChao Wang ◽  
ZaiLi Dong ◽  
...  

2011 ◽  
Vol 100 (3) ◽  
pp. 162a
Author(s):  
Jun Dong ◽  
Elizabeth M. Vanderlinde ◽  
Christopher K. Yost ◽  
Tanya E.S. Dahms

2018 ◽  
pp. 335-347 ◽  
Author(s):  
Thomas Torode ◽  
Marina Linardic ◽  
J. Louis Kaplan ◽  
Siobhan A. Braybrook

2014 ◽  
Vol 10 (20) ◽  
pp. 51-64 ◽  
Author(s):  
D.M. Devia ◽  
E. Restrepo-Parra ◽  
J.M. Velez-Restrepo

Tix Al1−xN coatings were grown using the triode magnetron sputtering technique varying the bias voltage between -40 V and -150V. The influence of bias voltage on structural and morphological properties was analyzed by means of energy dispersive spectroscopy, x-ray diffraction and atomic force microscopy techniques. As the bias voltage increased, an increase inthe Al atomic percentage was observed competing with Ti and producing structural changes. At low Al concentrations, the film presented a FCC crystalline structure; nevertheless, as Al was increased, the structure pre-sented a mix of FCC and HCP phases. On the other hand, an increase inbias voltage produced a decrease films thickness due to an increase in colli-sions. Moreover, the grain size and roughness were also strongly influencedby bias voltage.


Sign in / Sign up

Export Citation Format

Share Document