scholarly journals Multifaceted Role of PheDof12-1 in the Regulation of Flowering Time and Abiotic Stress Responses in Moso Bamboo (Phyllostachys edulis)

2019 ◽  
Vol 20 (2) ◽  
pp. 424 ◽  
Author(s):  
Jun Liu ◽  
Zhanchao Cheng ◽  
Lihua Xie ◽  
Xiangyu Li ◽  
Jian Gao

DNA binding with one finger (Dof) proteins, forming an important transcriptional factor family, are involved in gene transcriptional regulation, development, stress responses, and flowering responses in annual plants. However, knowledge of Dofs in perennial and erratically flowering moso bamboo is limited. In view of this, a Dof gene, PheDof12-1, was isolated from moso bamboo. PheDof12-1 is located in the nucleus and has the highest expression in palea and the lowest in bract. Moreover, PheDof12-1 expression is high in flowering leaves, then declines during flower development. The transcription level of PheDof12-1 is highly induced by cold, drought, salt, and gibberellin A3 (GA3) stresses. The functional characteristics of PheDof are researched for the first time in Arabidopsis, and the results show that transgenic Arabidopsis overexpressing PheDof12-1 shows early flowering under long-day (LD) conditions but there is no effect on flowering time under short-day (SD) conditions; the transcription levels of FT, SOC1, and AGL24 are upregulated; and FLC and SVP are downregulated. PheDof12-1 exhibits a strong diurnal rhythm, inhibited by light treatment and induced in dark. Yeast one-hybrid (Y1H) assay shows that PheDof12-1 can bind to the promoter sequence of PheCOL4. Taken together, these results indicate that PheDof12-1 might be involved in abiotic stress and flowering time, which makes it an important candidate gene for studying the molecular regulation mechanisms of moso bamboo flowering.

2017 ◽  
Vol 40 (5) ◽  
pp. 748-764 ◽  
Author(s):  
Alba‐Rocio Corrales ◽  
Laura Carrillo ◽  
Pilar Lasierra ◽  
Sergio G. Nebauer ◽  
Jose Dominguez‐Figueroa ◽  
...  

Plant Gene ◽  
2017 ◽  
Vol 11 ◽  
pp. 180-189 ◽  
Author(s):  
Sagar Banerjee ◽  
Anil Sirohi ◽  
Abid A. Ansari ◽  
Sarvajeet Singh Gill

2017 ◽  
Vol 86 (2) ◽  
Author(s):  
Angelique N. Besold ◽  
Benjamin A. Gilston ◽  
Jana N. Radin ◽  
Christian Ramsoomair ◽  
Edward M. Culbertson ◽  
...  

ABSTRACT The opportunistic fungal pathogen Candida albicans acquires essential metals from the host, yet the host can sequester these micronutrients through a process known as nutritional immunity. How the host withholds metals from C. albicans has been poorly understood; here we examine the role of calprotectin (CP), a transition metal binding protein. When CP depletes bioavailable Zn from the extracellular environment, C. albicans strongly upregulates ZRT1 and PRA1 for Zn import and maintains constant intracellular Zn through numerous cell divisions. We show for the first time that CP can also sequester Cu by binding Cu(II) with subpicomolar affinity. CP blocks fungal acquisition of Cu from serum and induces a Cu starvation stress response involving SOD1 and SOD3 superoxide dismutases. These transcriptional changes are mirrored when C. albicans invades kidneys in a mouse model of disseminated candidiasis, although the responses to Cu and Zn limitations are temporally distinct. The Cu response progresses throughout 72 h, while the Zn response is short-lived. Notably, these stress responses were attenuated in CP null mice, but only at initial stages of infection. Thus, Zn and Cu pools are dynamic at the host-pathogen interface and CP acts early in infection to restrict metal nutrients from C. albicans.


2019 ◽  
Vol 10 ◽  
Author(s):  
Xiang-Zhan Zhang ◽  
Wei-Jun Zheng ◽  
Xin-You Cao ◽  
Xi-Yan Cui ◽  
Shu-Ping Zhao ◽  
...  

2014 ◽  
Vol 65 (4) ◽  
pp. 995-1012 ◽  
Author(s):  
Alba-Rocío Corrales ◽  
Sergio G. Nebauer ◽  
Laura Carrillo ◽  
Pedro Fernández-Nohales ◽  
Jorge Marqués ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document