gene transcriptional regulation
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 2)

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 850
Author(s):  
Penglei Wang ◽  
Zhuanzhuan Yan ◽  
Xifang Zong ◽  
Qi Yan ◽  
Jiyu Zhang

The DNA-binding with one zinc finger (Dof) family of plant-specific transcription factors has a variety of important functions in gene transcriptional regulation, development, and stress responses. However, the structure and expression patterns of Dof family have not been identified in Cleistogenes songorica, which is an important xerophytic and perennial gramineous grass in desert grassland. In this study, 50 Dof genes were identified in C. songorica and could be classified into four groups. According to genome-wide analysis, 46 of 50 Dof genes were located on 20 chromosomes, and the gene structure and conserved protein motif of these proteins were analyzed. In addition, phylogenetic analysis of Dof genes in C. songorica, Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon estimated the evolutionary relationships, and these genes were grouped into seven clusters. Moreover, the expression profiles of these Dof genes in C. songorica were analyzed in response to high/low temperature, salinity, and ABA treatments. These results will provide valuable information for future studies on gene classification, cloning, and functional characterization of this family in C. songorica.


2021 ◽  
Vol 22 (2) ◽  
pp. 757
Author(s):  
Marco Gargaro ◽  
Giulia Scalisi ◽  
Giorgia Manni ◽  
Giada Mondanelli ◽  
Ursula Grohmann ◽  
...  

The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.


Transfusion ◽  
2020 ◽  
Vol 60 (4) ◽  
pp. 860-869 ◽  
Author(s):  
Yoshihiko Kominato ◽  
Rie Sano ◽  
Yoichiro Takahashi ◽  
Akira Hayakawa ◽  
Kenichi Ogasawara

2019 ◽  
Vol 35 (20) ◽  
pp. 3877-3883 ◽  
Author(s):  
Amlan Talukder ◽  
Samaneh Saadat ◽  
Xiaoman Li ◽  
Haiyan Hu

Abstract Motivation The identification of enhancer–promoter interactions (EPIs), especially condition-specific ones, is important for the study of gene transcriptional regulation. Existing experimental approaches for EPI identification are still expensive, and available computational methods either do not consider or have low performance in predicting condition-specific EPIs. Results We developed a novel computational method called EPIP to reliably predict EPIs, especially condition-specific ones. EPIP is capable of predicting interactions in samples with limited data as well as in samples with abundant data. Tested on more than eight cell lines, EPIP reliably identifies EPIs, with an average area under the receiver operating characteristic curve of 0.95 and an average area under the precision–recall curve of 0.73. Tested on condition-specific EPIPs, EPIP correctly identified 99.26% of them. Compared with two recently developed methods, EPIP outperforms them with a better accuracy. Availability and implementation The EPIP tool is freely available at http://www.cs.ucf.edu/˜xiaoman/EPIP/. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 13 ◽  
Author(s):  
Anastasia Falconi ◽  
Alessandra Bonito-Oliva ◽  
Martina Di Bartolomeo ◽  
Marcella Massimini ◽  
Francesco Fattapposta ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 424 ◽  
Author(s):  
Jun Liu ◽  
Zhanchao Cheng ◽  
Lihua Xie ◽  
Xiangyu Li ◽  
Jian Gao

DNA binding with one finger (Dof) proteins, forming an important transcriptional factor family, are involved in gene transcriptional regulation, development, stress responses, and flowering responses in annual plants. However, knowledge of Dofs in perennial and erratically flowering moso bamboo is limited. In view of this, a Dof gene, PheDof12-1, was isolated from moso bamboo. PheDof12-1 is located in the nucleus and has the highest expression in palea and the lowest in bract. Moreover, PheDof12-1 expression is high in flowering leaves, then declines during flower development. The transcription level of PheDof12-1 is highly induced by cold, drought, salt, and gibberellin A3 (GA3) stresses. The functional characteristics of PheDof are researched for the first time in Arabidopsis, and the results show that transgenic Arabidopsis overexpressing PheDof12-1 shows early flowering under long-day (LD) conditions but there is no effect on flowering time under short-day (SD) conditions; the transcription levels of FT, SOC1, and AGL24 are upregulated; and FLC and SVP are downregulated. PheDof12-1 exhibits a strong diurnal rhythm, inhibited by light treatment and induced in dark. Yeast one-hybrid (Y1H) assay shows that PheDof12-1 can bind to the promoter sequence of PheCOL4. Taken together, these results indicate that PheDof12-1 might be involved in abiotic stress and flowering time, which makes it an important candidate gene for studying the molecular regulation mechanisms of moso bamboo flowering.


2018 ◽  
Author(s):  
Yang Li ◽  
Pengyu Ni ◽  
Shaoqiang Zhang ◽  
Guojun Li ◽  
Zhengchang Su

ABSTRACTThe availability of a large volume of chromatin immunoprecipitation followed by sequencing (ChIP-seq) datasets for various transcription factors (TF) has provided an unprecedented opportunity to identify all functional TF binding motifs clustered in the enhancers in genomes. However, the progress has been largely hindered by the lack of a highly efficient and accurate tool that is fast enough to find not only the target motifs, but also cooperative motifs contained in very large ChIP-seq datasets with a binding peak length of typical enhancers (∼ 1,000 bp). To circumvent this hurdle, we herein present an ultra-fast and highly accurate motif-finding algorithm, ProSampler, with automatic motif length detection. ProSampler first identifies significant k-mers in the dataset and combines highly similar significant k-mers to form preliminary motifs. ProSampler then merges preliminary motifs with subtle similarity using a novel graph-based Gibbs sampler to find core motifs. Finally, ProSampler extends the core motifs by applying a two-proportion z-test to the flanking positions to identify motifs longer than k. As the number of preliminary motifs is much smaller than that of k-mers in a dataset, we greatly reduce the search space of the Gibbs sampler compared with conventional ones. By storing flanking sequences in a hash table, we avoid extensive IO and the necessity of examining all lengths of motifs in an interval. When evaluated on both synthetic and real ChIP-seq datasets, ProSampler runs orders of magnitude faster than the fastest existing tools while more accurately discovering primary motifs as well as cooperative motifs than do the best existing tools. Using ProSampler, we revealed previously unknown complex motif occurrence patterns in large ChIP-seq datasets, thereby providing insights into the mechanisms of cooperative TF binding for gene transcriptional regulation. Therefore, by allowing fast and accurate mining of the entire ChIP-seq datasets, ProSampler can greatly facilitate the efforts to identify the entire cis-regulatory code in genomes.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4686 ◽  
Author(s):  
Jin Li ◽  
Yang Wang ◽  
Xianglian Meng ◽  
Hong Liang

Proteins that modify the activity of transcription factors (TFs) are often called modulators and play a vital role in gene transcriptional regulation. Alternative splicing is a critical step of gene processing, and differentially spliced isoforms may have different functions. Alternative splicing can modulate gene function by adding or removing certain protein domains and thereby influence the activity of a protein. The objective of this study is to investigate the role of alternative splicing in modulating the transcriptional regulation in brain lower grade glioma (LGG), especially transcription factor ELK1, which is closely related to various disorders, including Alzheimer’s disease and Down syndrome. The results showed that changes in the exon inclusion ratio of proteins APP and STK16 are associated with changes in the expression correlation between ELK1 and its targets. In addition, the structural features of the two modulators are strongly associated with the pathological impact of exon inclusion. The results of our analysis suggest that alternatively spliced proteins have different functions in modifying transcription factors and can thereby induce the dysregulation of multiple genes.


Sign in / Sign up

Export Citation Format

Share Document