scholarly journals Magnetoferritin: Process, Prospects, and Their Biomedical Applications

2019 ◽  
Vol 20 (10) ◽  
pp. 2426 ◽  
Author(s):  
Le Xue ◽  
Dawei Deng ◽  
Jianfei Sun

Ferritin is a spherical iron storage protein composed of 24 subunits and an iron core. Using biomimetic mineralization, magnetic iron oxide can be synthesized in the cavity of ferritin to form magnetoferritin (MFt). MFt, also known as a superparamagnetic protein, is a novel magnetic nanomaterial with good biocompatibility and flexibility for biomedical applications. Recently, it has been demonstrated that MFt had tumor targetability and a peroxidase-like catalytic activity. Thus, MFt, with its many unique properties, provides a powerful platform for tumor diagnosis and therapy. In this review, we discuss the biomimetic synthesis and biomedical applications of MFt.

2017 ◽  
Vol 5 (3) ◽  
pp. 401-417 ◽  
Author(s):  
Weitao Yang ◽  
Weisheng Guo ◽  
Jin Chang ◽  
Bingbo Zhang

Currently, protein/peptide-based biomimetic mineralization has been demonstrated to be an efficient and promising strategy for synthesis of inorganic/metal nanoparticles (NPs) for bioapplications.


2004 ◽  
Vol 4 (7) ◽  
pp. 708-711 ◽  
Author(s):  
Masato Tominaga ◽  
Li Han ◽  
Lingyan Wang ◽  
Mathew M. Maye ◽  
Jin Luo ◽  
...  

1973 ◽  
Vol 135 (2) ◽  
pp. 343-348 ◽  
Author(s):  
Ian G. Macara ◽  
Terence G. Hoy ◽  
Pauline M. Harrison

The iron-storage protein ferritin consists of a protein shell and has an iron content of up to 4500 iron atoms as a microcrystalline ferric oxide hydrate. A study was made of the uptake of ferrous iron by apoferritin in the presence of an oxidizing agent at very low iron:protein ratios. At ratios of less than about 150 iron atoms per apoferritin molecule hyperbolic progress curves were obtained, whereas at higher ratios the curves became sigmoidal under the conditions used. A computer model, developed previously (Macara et al., 1972), was shown to account for this result. The experimental evidence indicates that apoferritin binds ferrous iron and catalyses the initial stage in the formation of the ferric oxide hydrate inside the protein shell. This stage involves the oxidation of sufficient iron within the protein molecule to form a stable nucleus on which the growth of the microcrystalline iron-core particles can proceed. A possible schematic mechanism for the action of apoferritin is suggested.


1998 ◽  
Vol 29 ◽  
pp. S913-S914 ◽  
Author(s):  
Q.A. Pankhurst ◽  
P. Allen ◽  
N.S. Cohen ◽  
I. Colbeck ◽  
G.D. Forster ◽  
...  

1993 ◽  
Vol 296 (3) ◽  
pp. 721-728 ◽  
Author(s):  
A Treffry ◽  
E R Bauminger ◽  
D Hechel ◽  
N W Hodson ◽  
I Nowik ◽  
...  

This paper aims to define the role of the threefold intersubunit channels in iron uptake and sequestration processes in the iron-storage protein, ferritin. Iron uptake, measured as loss of availability of Fe(II) to ferrozine (due to oxidation), has been studied in recombinant human H-chain ferritins bearing amino acid substitutions in the threefold channels or ferroxidase centres. Similar measurements with recombinant horse L-chain ferritin are compared. It is concluded that significant Fe(II) oxidation occurs only at the H-chain ferroxidase centres and not in the threefold channels, although this route is used by Fe(II) for entry. Investigations by Mössbauer and u.v.-difference spectroscopy show that part of the iron oxidized by H-chain ferritin returns to the threefold channels as Fe(III). This monomeric Fe(III) can be displaced by addition of Tb(III). Fe(III) also moves into the cavity for formation of the iron-core mineral, ferrihydrite. Iron incorporated into ferrihydrite becomes kinetically inert.


Author(s):  
William H. Massover

The molecular structure of the iron-storage protein, ferritin, is becoming known in ever finer detail. The 24 apoferritin subunits (MW ca. 20,000) have a 2:1 axial ratio and are polymerized with 4:3:2 symmetry to form an outer shell surrounding a variable amount of microcrystalline iron, Recent x-ray diffraction results indicate that the projected outline of the native molecule has a quasi-hexagonal shape when viewed down the 3-fold axes of symmetry, and a quasi-square shape when looking down the 4-fold axes. To date, no electron microscope study has reported observing anything other than circular profiles, which would indicate that ferritin is strictly spherical. The apparent conflict between the "hollow sphere" of electron microscopy (E.M.) and the "truncated rhombic dodecahedron" of x-ray diffraction could reflect the poorer effective resolution of E.M. coming from radiation damage, staining, drying, etc. The present study investigates the detailed shape of individual ferritin molecules in order to search for the predicted aspherical profiles and to interpret the nature of this apparent contradiction.


2015 ◽  
Vol 22 (15) ◽  
pp. 1808-1828 ◽  
Author(s):  
Diana Couto ◽  
Marisa Freitas ◽  
Felix Carvalho ◽  
Eduarda Fernandes

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Beilei Gong ◽  
Yuanbing Shen ◽  
Huiyan Li ◽  
Xiaojun Li ◽  
Xia Huan ◽  
...  

AbstractOwing to strong and tunable surface plasmon resonance (SPR) effect and good biocompatibility, gold nanoparticles have been suggested to be a versatile platform for a broad range of biomedical applications. In this study, a new nanoplatform of thermo-responsive polymer encapsulated gold nanorods incorporating indocyanine green (ICG) was designed to couple the photothermal properties of gold nanorods (AuNRs) and the photodynamic properties of ICG to enhance the photodynamic/photothermal combination therapy (PDT/PTT). In addition to the significantly increased payload and enhancing photostability of ICG, the polymer shell in the nanoplatform also has thermo-responsive characteristics that can control the release of drugs at tumour sites upon the laser irradiation. On the basis of these improvements, the nanoplatform strongly increased drug aggregation at the tumour site and improved the photothermal/photodynamic therapeutic efficacy. These results suggest that this nanoplatform would be a great potential system for tumour imaging and antitumour therapy.


Sign in / Sign up

Export Citation Format

Share Document