scholarly journals A Structure-Based Drug Discovery Paradigm

2019 ◽  
Vol 20 (11) ◽  
pp. 2783 ◽  
Author(s):  
Maria Batool ◽  
Bilal Ahmad ◽  
Sangdun Choi

Structure-based drug design is becoming an essential tool for faster and more cost-efficient lead discovery relative to the traditional method. Genomic, proteomic, and structural studies have provided hundreds of new targets and opportunities for future drug discovery. This situation poses a major problem: the necessity to handle the “big data” generated by combinatorial chemistry. Artificial intelligence (AI) and deep learning play a pivotal role in the analysis and systemization of larger data sets by statistical machine learning methods. Advanced AI-based sophisticated machine learning tools have a significant impact on the drug discovery process including medicinal chemistry. In this review, we focus on the currently available methods and algorithms for structure-based drug design including virtual screening and de novo drug design, with a special emphasis on AI- and deep-learning-based methods used for drug discovery.

2021 ◽  
Vol 22 (18) ◽  
pp. 9983
Author(s):  
Jintae Kim ◽  
Sera Park ◽  
Dongbo Min ◽  
Wankyu Kim

Drug discovery based on artificial intelligence has been in the spotlight recently as it significantly reduces the time and cost required for developing novel drugs. With the advancement of deep learning (DL) technology and the growth of drug-related data, numerous deep-learning-based methodologies are emerging at all steps of drug development processes. In particular, pharmaceutical chemists have faced significant issues with regard to selecting and designing potential drugs for a target of interest to enter preclinical testing. The two major challenges are prediction of interactions between drugs and druggable targets and generation of novel molecular structures suitable for a target of interest. Therefore, we reviewed recent deep-learning applications in drug–target interaction (DTI) prediction and de novo drug design. In addition, we introduce a comprehensive summary of a variety of drug and protein representations, DL models, and commonly used benchmark datasets or tools for model training and testing. Finally, we present the remaining challenges for the promising future of DL-based DTI prediction and de novo drug design.


2020 ◽  
Author(s):  
Rafal Madaj ◽  
Ben Geoffrey A S ◽  
Pavan Preetham Valluri ◽  
Akhil Sanker

The on-going data-science and AI revolution offers researchers with fresh set of tools to approach structure-based drug design problems in the computer aided drug design space. A novel programmatic tool that can be used in aid of in silico-deep learning based de novo drug design for any target of interest has been reported. Once the user specifies the target of interest, the programmatic workflow of the tool generates novel SMILES of compounds that are likely to be active against the target. The tool also performs a computationally efficient In-Silico modeling of the target and the newly generated compounds and stores the results in the working folder of the user. A demonstrated use of the tool has been shown with the target signatures of Tumor Necrosis Factor-Alpha, an important therapeutic target in the case of anti-inflammatory treatment. The future scope of the tool involves, running the tool on a High Performance Cluster for all known target signatures to generate data that will be useful to drive AI and Big data driven drug discovery. The code is hosted, maintained and supported at the GitHub repository given in link below https://github.com/bengeof/Target2DeNovoDrug


2021 ◽  
Author(s):  
Ben Geoffrey ◽  
Rafal Madaj ◽  
Pavan Preetham Valluri ◽  
Akhil Sanker

The past decade has seen a surge in the range of application data science, machine learning, deep learning, and AI methods to drug discovery. The presented work involves an assemblage of a variety of AI methods for drug discovery along with the incorporation of in silico techniques to provide a holistic tool for automated drug discovery. When drug candidates are required to be identified for aparticular drug target of interest, the user is required to provide the tool target signatures in the form of an amino acid sequence or its corresponding nucleotide sequence. The tool collects data registered on PubChem required to perform an automated QSAR and with the validated QSAR model, prediction and drug lead generation are carried out. This protocol we call Target2Drug. This is followed by a protocol we call Target2DeNovoDrug wherein novel molecules with likely activityagainst the target are generated de novo using a generative LSTM model. It is often required in drug discovery that the generated molecules possess certain properties like drug-likeness, and therefore to optimize the generated de novo molecules toward the required drug-like property we use a deep learning model called DeepFMPO, and this protocol we call Target2DeNovoDrugPropMax. This is followed by the fast automated AutoDock-Vina based in silico modeling and profiling of theinteraction of optimized drug leads and the drug target. This is followed by an automated execution of the Molecular Dynamics protocol that is also carried out for the complex identified with the best protein-ligand interaction from the AutoDock- Vina based virtual screening. The results are stored in the working folder of the user. The code is maintained, supported, and provide for use in thefollowing GitHub repositoryhttps://github.com/bengeof/Target2DeNovoDrugPropMaxAnticipating the rise in the use of quantum computing and quantum machine learning in drug discovery we use the Penny-lane interface to quantum hardware to turn classical Keras layers used in our machine/deep learning models into a quantum layer and introduce quantum layers into our classical models to produce a quantum-classical machine/deep learning hybrid model of our tool and the code corresponding to the same is provided belowhttps://github.com/bengeof/QPoweredTarget2DeNovoDrugPropMax


2020 ◽  
Vol 20 (19) ◽  
pp. 1651-1660
Author(s):  
Anuraj Nayarisseri

Drug discovery is one of the most complicated processes and establishment of a single drug may require multidisciplinary attempts to design efficient and commercially viable drugs. The main purpose of drug design is to identify a chemical compound or inhibitor that can bind to an active site of a specific cavity on a target protein. The traditional drug design methods involved various experimental based approaches including random screening of chemicals found in nature or can be synthesized directly in chemical laboratories. Except for the long cycle design and time, high cost is also the major issue of concern. Modernized computer-based algorithm including structure-based drug design has accelerated the drug design and discovery process adequately. Surprisingly from the past decade remarkable progress has been made concerned with all area of drug design and discovery. CADD (Computer Aided Drug Designing) based tools shorten the conventional cycle size and also generate chemically more stable and worthy compounds and hence reduce the drug discovery cost. This special edition of editorial comprises the combination of seven research and review articles set emphasis especially on the computational approaches along with the experimental approaches using a chemical synthesizing for the binding affinity in chemical biology and discovery as a salient used in de-novo drug designing. This set of articles exfoliates the role that systems biology and the evaluation of ligand affinity in drug design and discovery for the future.


2021 ◽  
Vol 61 (2) ◽  
pp. 621-630
Author(s):  
Sowmya Ramaswamy Krishnan ◽  
Navneet Bung ◽  
Gopalakrishnan Bulusu ◽  
Arijit Roy

2021 ◽  
Author(s):  
Xuhan Liu ◽  
Kai Ye ◽  
Herman W. T. van Vlijmen ◽  
Adriaan P. IJzerman ◽  
Gerard J. P. van Westen

Due to the large drug-like chemical space available to search for feasible drug-like molecules, rational drug design often starts from specific scaffolds to which side chains/substituents are added or modified. With the rapid growth of the application of deep learning in drug discovery, a variety of effective approaches have been developed for de novo drug design. In previous work, we proposed a method named DrugEx, which can be applied in polypharmacology based on multi-objective deep reinforcement learning. However, the previous version is trained under fixed objectives similar to other known methods and does not allow users to input any prior information (i.e. a desired scaffold). In order to improve the general applicability, we updated DrugEx to design drug molecules based on scaffolds which consist of multiple fragments provided by users. In this work, the Transformer model was employed to generate molecular structures. The Transformer is a multi-head self-attention deep learning model containing an encoder to receive scaffolds as input and a decoder to generate molecules as output. In order to deal with the graph representation of molecules we proposed a novel positional encoding for each atom and bond based on an adjacency matrix to extend the architecture of the Transformer. Each molecule was generated by growing and connecting procedures for the fragments in the given scaffold that were unified into one model. Moreover, we trained this generator under a reinforcement learning framework to increase the number of desired ligands. As a proof of concept, our proposed method was applied to design ligands for the adenosine A2A receptor (A2AAR) and compared with SMILES-based methods. The results demonstrated the effectiveness of our method in that 100% of the generated molecules are valid and most of them had a high predicted affinity value towards A2AAR with given scaffolds.


Author(s):  
Thomas Blaschke ◽  
Josep Arús-Pous ◽  
Hongming Chen ◽  
Christian Margreitter ◽  
Christian Tyrchan ◽  
...  

With this application note we aim to offer the community a production-ready tool for de novo design. It can be effectively applied on drug discovery projects that are striving to resolve either exploration or exploitation problems while navigating the chemical space. By releasing the code we are aiming to facilitate the research on using generative methods on drug discovery problems and to promote the collaborative efforts in this area so that it can be used as an interaction point for future scientific collaborations.


2020 ◽  
Author(s):  
Thomas Blaschke ◽  
Josep Arús-Pous ◽  
Hongming Chen ◽  
Christian Margreitter ◽  
Christian Tyrchan ◽  
...  

With this application note we aim to offer the community a production-ready tool for de novo design. It can be effectively applied on drug discovery projects that are striving to resolve either exploration or exploitation problems while navigating the chemical space. By releasing the code we are aiming to facilitate the research on using generative methods on drug discovery problems and to promote the collaborative efforts in this area so that it can be used as an interaction point for future scientific collaborations.


Author(s):  
Adarsh Sahu ◽  
Jyotika Mishra ◽  
Namrata Kushwaha

: The advancement of computing and technology has invaded all the dimensions of science. Artificial intelligence (AI) is one core branch of Computer Science, which has percolated to all the arenas of science and technology, from core engineering to medicines. Thus, AI has found its way for application in the field of medicinal chemistry and heath care. The conventional methods of drug design have been replaced by computer-aided designs of drugs in recent times. AI is being used extensively to improve the design techniques and required time of the drugs. Additionally, the target proteins can be conveniently identified using AI, which enhances the success rate of the designed drug. The AI technology is used in each step of the drug designing procedure, which decreases the health hazards related to preclinical trials and also reduces the cost substantially. The AI is an effective tool for data mining based on the huge pharmacological data and machine learning process. Hence, AI has been used in de novo drug design, activity scoring, virtual screening and in silico evaluation in the properties (absorption, distribution, metabolism, excretion and toxicity) of a drug molecule. Various pharmaceutical companies have teamed up with AI companies for faster progress in the field of drug development, along with the healthcare system. The review covers various aspects of AI (Machine learning, Deep learning, Artificial neural networks) in drug design. It also provides a brief overview of the recent progress by the pharmaceutical companies in drug discovery by associating with different AI companies.


2011 ◽  
Vol 39 (5) ◽  
pp. 1382-1386 ◽  
Author(s):  
Changsheng Zhang ◽  
Luhua Lai

Structure-based drug design for chemical molecules has been widely used in drug discovery in the last 30 years. Many successful applications have been reported, especially in the field of virtual screening based on molecular docking. Recently, there has been much progress in fragment-based as well as de novo drug discovery. As many protein–protein interactions can be used as key targets for drug design, one of the solutions is to design protein drugs based directly on the protein complexes or the target structure. Compared with protein–ligand interactions, protein–protein interactions are more complicated and present more challenges for design. Over the last decade, both sampling efficiency and scoring accuracy of protein–protein docking have increased significantly. We have developed several strategies for structure-based protein drug design. A grafting strategy for key interaction residues has been developed and successfully applied in designing erythropoietin receptor-binding proteins. Similarly to small-molecule design, we also tested de novo protein-binder design and a virtual screen of protein binders using protein–protein docking calculations. In comparison with the development of structure-based small-molecule drug design, we believe that structure-based protein drug design has come of age.


Sign in / Sign up

Export Citation Format

Share Document