scholarly journals Species-Specific Glucose-6-Phosphatase Activity in the Small Intestine—Studies in Three Different Mammalian Models

2019 ◽  
Vol 20 (20) ◽  
pp. 5039
Author(s):  
Viola Varga ◽  
Zsófia Murányi ◽  
Anita Kurucz ◽  
Paola Marcolongo ◽  
Angelo Benedetti ◽  
...  

Besides the liver, which has always been considered the major source of endogenous glucose production in all post-absorptive situations, kidneys and intestines can also produce glucose in blood, particularly during fasting and under protein feeding. However, observations gained in different experimental animals have given ambiguous results concerning the presence of the glucose-6-phosphatase system in the small intestine. The aim of this study was to better define the species-related differences of this putative gluconeogenic organ in glucose homeostasis. The components of the glucose-6-phosphatase system (i.e., glucose-6-phosphate transporter and glucose-6-phosphatase itself) were analyzed in homogenates or microsomal fractions prepared from the small intestine mucosae and liver of rats, guinea pigs, and humans. Protein and mRNA levels, as well as glucose-6-phosphatase activities, were detected. The results showed that the glucose-6-phosphatase system is poorly represented in the small intestine of rats; on the other hand, significant expressions of glucose-6-phosphate transporter and of the glucose-6-phosphatase were found in the small intestine of guinea pigs and homo sapiens. The activity of the recently described fructose-6-phosphate transporter–intraluminal hexose isomerase pathway was also present in intestinal microsomes from these two species. The results demonstrate that the gluconeogenic role of the small intestine is highly species-specific and presumably dependent on feeding behavior (e.g., fructose consumption) and the actual state of metabolism.

1985 ◽  
Vol 54 (2) ◽  
pp. 449-458 ◽  
Author(s):  
A. N. Janes ◽  
T. E. C. Weekes ◽  
D. G. Armstrong

1. Sheep fitted with re-entrant canulas in the proximal duodenum and terminal ileum were used to determine the amount of α-glucoside entering, and apparently disappearing from, the small intestine when either dried-grass or ground maize-based diets were fed. The fate of any α-glucoside entering the small intestine was studied by comparing the net disappearance of such a-glucoside from the small intestine with the absorption of glucose into the mesenteric venous blood.2. Glucose absorption from the small intestine was measured in sheep equipped with catheters in the mesenteric vein and carotid artery. A continuous infusion of [6-3H]glucose was used to determine glucose utilization by the mesenteric-drained viscera and the whole-body glucose turnover rate (GTR).3. The amounts of α-glucoside entering the small intestine when the dried-grass and maize-based diets were given were 13.9 (SE 1.5) and 95.4 (SE 16.2) g/24 h respectively; apparent digestibilities of such α-glucoside in the small intestine were 60 and 90% respectively.4. The net absorption of glucose into the mesenteric venous blood was —2.03 (SE 1.20) and 19.28 (SE 0.75) mmol/h for the dried-grass and maize-based diets respectively. Similarly, total glucose absorption amounted to 1.52 (SE 1.35) and 23.33 (SE 1.86) mmol/h (equivalent to 7 and 101 g/24 h respectively). These values represented 83 and 11 1% of the a-glucoside apparently disappearing from the small intestine, determined using the re-entrant cannulated sheep.5. Total glucose absorption represented 8 and 61% of the whole-body GTR for the dried-grass and maize-based diets respectively. Endogenous glucose production was significantly lower when the sheep were fed on the maize-based diet compared with the dried-grass diet.6. The mesenteric-drained viscera metabolized a small amount of glucose, equivalent to 234 and 17% of the total glucose absorbed for the dried-grass and maize-based diets respectively.7. It is concluded that a large proportion of the starch entering the small intestine of sheep given a maize-based diet is digested and absorbed as glucose, and thus contributes to the whole-body GTR.


2019 ◽  
Vol 316 (4) ◽  
pp. R352-R361
Author(s):  
Dane M. Horton ◽  
David A. Saint ◽  
Kathryn L. Gatford ◽  
Karen L. Kind ◽  
Julie A. Owens

Intrauterine growth restriction (IUGR) and subsequent neonatal catch-up growth are implicated in programming of insulin resistance later in life. Spontaneous IUGR in the guinea pig, due to natural variation in litter size, produces offspring with asymmetric IUGR and neonatal catch-up growth. We hypothesized that spontaneous IUGR and/or accelerated neonatal growth would impair insulin sensitivity in adult guinea pigs. Insulin sensitivity of glucose metabolism was determined by hyperinsulinemic-euglycemic clamp (HEC) in 38 (21 male, 17 female) young adult guinea pigs from litters of two-to-four pups. A subset (10 male, 8 female) were infused with d-[3-3H]glucose before and during the HEC to determine rates of basal and insulin-stimulated glucose utilization, storage, glycolysis, and endogenous glucose production. n males, the insulin sensitivity of whole body glucose uptake ( r = 0.657, P = 0.002) and glucose utilization ( r = 0.884, P = 0.004) correlated positively and independently with birth weight, but not with neonatal fractional growth rate (FGR10–28). In females, the insulin sensitivity of whole body and partitioned glucose metabolism was not related to birth weight, but that of endogenous glucose production correlated negatively and independently with FGR10–28 ( r = −0.815, P = 0.025). Thus, perinatal growth programs insulin sensitivity of glucose metabolism in the young adult guinea pig and in a sex-specific manner; impaired insulin sensitivity, including glucose utilization, occurs after IUGR in males and impaired hepatic insulin sensitivity after rapid neonatal growth in females.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 155-LB
Author(s):  
CAROLINA SOLIS-HERRERA ◽  
MARIAM ALATRACH ◽  
CHRISTINA AGYIN ◽  
HENRI HONKA ◽  
RUPAL PATEL ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1832-P
Author(s):  
ANNA SANTORO ◽  
PENG ZHOU ◽  
YAN ZHU ◽  
ODILE D. PERONI ◽  
ANDREW T. NELSON ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 246-OR
Author(s):  
MARIAM ALATRACH ◽  
CHRISTINA AGYIN ◽  
NITCHAKARN LAICHUTHAI ◽  
JOHN M. ADAMS ◽  
MUHAMMAD ABDUL-GHANI ◽  
...  

Author(s):  
Ada Admin ◽  
Michelle Carey ◽  
Eric Lontchi-Yimagou ◽  
William Mitchell ◽  
Sarah Reda ◽  
...  

Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this ‘glucose effectiveness’ is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). ATP-sensitive potassium channels (K<sub>ATP</sub> channels) in the central nervous system (CNS) have been shown to regulate EGP in humans and rodents. We examined the contribution of central K<sub>ATP</sub> channels to glucose effectiveness. Under fixed hormonal conditions (‘pancreatic clamp’ studies), hyperglycemia suppressed EGP by ~50% in both non-diabetic humans and normal Sprague Dawley rats. By contrast, antagonism of K<sub>ATP</sub> channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes in rats were abolished by intracerebroventricular (ICV) administration of the KATP channel agonist diazoxide. These findings indicate that about half of EGP suppression by hyperglycemia is mediated by central K<sub>ATP</sub> channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in T2D.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1898-P
Author(s):  
ADELINA I.L. LANE ◽  
SAVANNA N. WENINGER ◽  
FRANK DUCA

Sign in / Sign up

Export Citation Format

Share Document