scholarly journals Modelling Neurotropic Flavivirus Infection in Human Induced Pluripotent Stem Cell-Derived Systems

2019 ◽  
Vol 20 (21) ◽  
pp. 5404 ◽  
Author(s):  
Giovanna Desole ◽  
Alessandro Sinigaglia ◽  
Silvia Riccetti ◽  
Giulia Masi ◽  
Monia Pacenti ◽  
...  

Generation of human induced pluripotent stem cells (hiPSCs) and their differentiation into a variety of cells and organoids have allowed setting up versatile, non-invasive, ethically sustainable, and patient-specific models for the investigation of the mechanisms of human diseases, including viral infections and host–pathogen interactions. In this study, we investigated and compared the infectivity and replication kinetics in hiPSCs, hiPSC-derived neural stem cells (NSCs) and undifferentiated neurons, and the effect of viral infection on host innate antiviral responses of representative flaviviruses associated with diverse neurological diseases, i.e., Zika virus (ZIKV), West Nile virus (WNV), and dengue virus (DENV). In addition, we exploited hiPSCs to model ZIKV infection in the embryo and during neurogenesis. The results of this study confirmed the tropism of ZIKV for NSCs, but showed that WNV replicated in these cells with much higher efficiency than ZIKV and DENV, inducing massive cell death. Although with lower efficiency, all flaviviruses could also infect pluripotent stem cells and neurons, inducing similar patterns of antiviral innate immune response gene expression. While showing the usefulness of hiPSC-based infection models, these findings suggest that additional virus-specific mechanisms, beyond neural tropism, are responsible for the peculiarities of disease phenotype in humans.

2021 ◽  
Author(s):  
Foad J Rouhani ◽  
Xueqing Zou ◽  
Petr Danecek ◽  
Tauanne Dias Amarante ◽  
Gene Koh ◽  
...  

SummaryHuman Induced Pluripotent Stem Cells (hiPSC) are an established patient-specific model system where opportunities are emerging for cell-based therapies. We contrast hiPSCs derived from different tissues, skin and blood, in the same individual. We show extensive single-nucleotide mutagenesis in all hiPSC lines, although fibroblast-derived hiPSCs (F-hiPSCs) are particularly heavily mutagenized by ultraviolet(UV)-related damage. We utilize genome sequencing data on 454 F-hiPSCs and 44 blood-derived hiPSCs (B-hiPSCs) to gain further insights. Across 324 whole genome sequenced(WGS) F-hiPSCs derived by the Human Induced Pluripotent Stem Cell Initiative (HipSci), UV-related damage is present in ~72% of cell lines, sometimes causing substantial mutagenesis (range 0.25-15 per Mb). Furthermore, we find remarkable genomic heterogeneity between independent F-hiPSC clones derived from the same reprogramming process in the same donor, due to oligoclonal populations within fibroblasts. Combining WGS and exome-sequencing data of 452 HipSci F-hiPSCs, we identify 272 predicted pathogenic mutations in cancer-related genes, of which 21 genes were hit recurrently three or more times, involving 77 (17%) lines. Notably, 151 of 272 mutations were present in starting fibroblast populations suggesting that more than half of putative driver events in F-hiPSCs were acquired in vivo. In contrast, B-hiPSCs reprogrammed from erythroblasts show lower levels of genome-wide mutations (range 0.28-1.4 per Mb), no UV damage, but a strikingly high prevalence of acquired BCOR mutations of ~57%, indicative of strong selection pressure. All hiPSCs had otherwise stable, diploid genomes on karyotypic pre-screening, highlighting how copy-number-based approaches do not have the required resolution to detect widespread nucleotide mutagenesis. This work strongly suggests that models for cell-based therapies require detailed nucleotide-resolution characterization prior to clinical application.


2021 ◽  
Author(s):  
Milan Fernando ◽  
Scott Lee ◽  
Jesse R Wark ◽  
Di Xiao ◽  
Hani J Kim ◽  
...  

Advances in the study of neurological conditions have been possible due to induced pluripotent stem cell technologies and the generation of neural cell types and organoids. Numerous studies have described the generation of neural ectoderm-derived retinal and brain structures from pluripotent stem cells. However, the field is still troubled by technical challenges, including high culture costs and organoid-to-organoid variability. Here, we describe a simple and economical protocol that reproducibly gives rise to the neural retina and cortical brain regions from confluent cultures of stem cells. The spontaneously generated cortical organoids were isolated and cultured in suspension conditions for maturation and are transcriptionally comparable to organoids generated by other methods and to human foetal cortex. Furthermore, these organoids show spontaneous functional network activity with proteomic analysis and electron microscopy demonstrating the presence of synaptic components and maturity. The generation of retinal and brain organoids in close proximity also enabled their mutual isolation. Further culture of this complex organoid system demonstrated the formation of optic nerve-like structures connecting retinal and brain organoids, which might facilitate the investigation of the mechanisms of neurological diseases of the eye and brain.


2018 ◽  
Vol 27 (9) ◽  
pp. 1301-1312 ◽  
Author(s):  
Jui-Hao Lee ◽  
Jen-Wei Liu ◽  
Shinn-Zong Lin ◽  
Horng-Jyh Harn ◽  
Tzyy-Wen Chiou

Induced pluripotent stem cells (iPSCs), which are generated through reprogramming adult somatic cells by expressing specific transcription factors, can differentiate into derivatives of the three embryonic germ layers and accelerate rapid advances in stem cell research. Neurological diseases such as amyotrophic lateral sclerosis (ALS) have benefited enormously from iPSC technology. This approach can be particularly important for creating iPSCs from patients with familial or sporadic forms of ALS. Motor neurons differentiated from the ALS-patient-derived iPSC can help to determine the relationship between cellular phenotype and genotype. Patient-derived iPSCs facilitate the development of new drugs and/or drug screening for ALS treatment and allow the exploration of the possible mechanism of ALS disease. In this article, we reviewed ALS-patient-specific iPSCs with various genetic mutations, progress in drug development for ALS disease, functional assays showing the differentiation of iPSCs into mature motor neurons, and promising biomarkers in ALS patients for the evaluation of drug candidates.


2021 ◽  
Vol 7 (12) ◽  
pp. eabf7412
Author(s):  
P. Nayak ◽  
A. Colas ◽  
M. Mercola ◽  
S. Varghese ◽  
S. Subramaniam

Understanding the mechanisms of myogenesis in human induced pluripotent stem cells (hiPSCs) is a prerequisite to achieving patient-specific therapy for diseases of skeletal muscle. hiPSCs of different origin show distinctive kinetics and ability to differentiate into myocytes. To address the unique cellular and temporal context of hiPSC differentiation, we perform a longitudinal comparison of the transcriptomic profiles of three hiPSC lines that display differential myogenic specification, one robust and two blunted. We detail temporal differences in mechanisms that lead to robust myogenic specification. We show gene expression signatures of putative cell subpopulations and extracellular matrix components that may support myogenesis. Furthermore, we show that targeted knockdown of ZIC3 at the outset of differentiation leads to improved myogenic specification in blunted hiPSC lines. Our study suggests that β-catenin transcriptional cofactors mediate cross-talk between multiple cellular processes and exogenous cues to facilitate specification of hiPSCs to mesoderm lineage, leading to robust myogenesis.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


Sign in / Sign up

Export Citation Format

Share Document