scholarly journals Endoplasmic Reticulum Stress Pathway, the Unfolded Protein Response, Modulates Immune Function in the Tumor Microenvironment to Impact Tumor Progression and Therapeutic Response

2019 ◽  
Vol 21 (1) ◽  
pp. 169 ◽  
Author(s):  
Manuel U. Ramirez ◽  
Salvador R. Hernandez ◽  
David R. Soto-Pantoja ◽  
Katherine L. Cook

Despite advances in cancer therapy, several persistent issues remain. These include cancer recurrence, effective targeting of aggressive or therapy-resistant cancers, and selective treatments for transformed cells. This review evaluates the current findings and highlights the potential of targeting the unfolded protein response to treat cancer. The unfolded protein response, an evolutionarily conserved pathway in all eukaryotes, is initiated in response to misfolded proteins accumulating within the lumen of the endoplasmic reticulum. This pathway is initially cytoprotective, allowing cells to survive stressful events; however, prolonged activation of the unfolded protein response also activates apoptotic responses. This balance is key in successful mammalian immune response and inducing cell death in malignant cells. We discuss how the unfolded protein response affects cancer progression, survival, and immune response to cancer cells. The literature shows that targeting the unfolded protein response as a monotherapy or in combination with chemotherapy or immunotherapies increases the efficacy of these drugs; however, systemic unfolded protein response targeting may yield deleterious effects on immune cell function and should be taken into consideration. The material in this review shows the promise of both approaches, each of which merits further research.

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4443
Author(s):  
Ankit Patel ◽  
Masanori Oshi ◽  
Li Yan ◽  
Ryusei Matsuyama ◽  
Itaru Endo ◽  
...  

Hepatocellular carcinoma is a leading cause of cancer death worldwide. The unfolded protein response (UPR) has been revealed to confer tumorigenic capacity in cancer cells. We hypothesized that a quantifiable score representative of the UPR could be used as a biomarker for cancer progression in HCC. In this study, a total of 655 HCC patients from 4 independent HCC cohorts were studied to examine the relationships between enhancement of the UPR and cancer biology and patient survival in HCC utilizing an UPR score. The UPR correlated with carcinogenic sequence and progression of HCC consistently in two cohorts. Enhanced UPR was associated with the clinical parameters of HCC progression, such as cancer stage and multiple parameters of cell proliferation, including histological grade, mKI67 gene expression, and enrichment of cell proliferation-related gene sets. The UPR was significantly associated with increased mutational load, but not with immune cell infiltration or angiogeneis across independent cohorts. The UPR was consistently associated with worse survival across independent cohorts of HCC. In conclusion, the UPR score may be useful as a biomarker to predict prognosis and to better understand HCC.


1997 ◽  
Vol 8 (9) ◽  
pp. 1805-1814 ◽  
Author(s):  
J S Cox ◽  
R E Chapman ◽  
P Walter

The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis.


2012 ◽  
Vol 26 (6) ◽  
pp. 2437-2445 ◽  
Author(s):  
Soumen Kahali ◽  
Bhaswati Sarcar ◽  
Antony Prabhu ◽  
Edward Seto ◽  
Prakash Chinnaiyan

1998 ◽  
Vol 143 (4) ◽  
pp. 921-933 ◽  
Author(s):  
Susana Silberstein ◽  
Gabriel Schlenstedt ◽  
Pam A. Silver ◽  
Reid Gilmore

Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Δscj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Δscj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.


2003 ◽  
Vol 23 (21) ◽  
pp. 7448-7459 ◽  
Author(s):  
Ann-Hwee Lee ◽  
Neal N. Iwakoshi ◽  
Laurie H. Glimcher

ABSTRACT The mammalian unfolded protein response (UPR) protects the cell against the stress of misfolded proteins in the endoplasmic reticulum (ER). We have investigated here the contribution of the UPR transcription factors XBP-1, ATF6α, and ATF6β to UPR target gene expression. Gene profiling of cell lines lacking these factors yielded several XBP-1-dependent UPR target genes, all of which appear to act in the ER. These included the DnaJ/Hsp40-like genes, p58IPK, ERdj4, and HEDJ, as well as EDEM, protein disulfide isomerase-P5, and ribosome-associated membrane protein 4 (RAMP4), whereas expression of BiP was only modestly dependent on XBP-1. Surprisingly, given previous reports that enforced expression of ATF6α induced a subset of UPR target genes, cells deficient in ATF6α, ATF6β, or both had minimal defects in upregulating UPR target genes by gene profiling analysis, suggesting the presence of compensatory mechanism(s) for ATF6 in the UPR. Since cells lacking both XBP-1 and ATF6α had significantly impaired induction of select UPR target genes and ERSE reporter activation, XBP-1 and ATF6α may serve partially redundant functions. No UPR target genes that required ATF6β were identified, nor, in contrast to XBP-1 and ATF6α, did the activity of the UPRE or ERSE promoters require ATF6β, suggesting a minor role for it during the UPR. Collectively, these results suggest that the IRE1/XBP-1 pathway is required for efficient protein folding, maturation, and degradation in the ER and imply the existence of subsets of UPR target genes as defined by their dependence on XBP-1. Further, our observations suggest the existence of additional, as-yet-unknown, key regulators of the UPR.


Sign in / Sign up

Export Citation Format

Share Document