scholarly journals The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle

2020 ◽  
Vol 21 (4) ◽  
pp. 1479 ◽  
Author(s):  
Cristina Romero-López ◽  
Alfredo Berzal-Herranz

RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.

1999 ◽  
Vol 37 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
Janet Mellor ◽  
Anna Hawkins ◽  
Peter Simmonds

Standardization and genotype independence of methods used to quantify hepatitis C virus (HCV) RNA in clinical specimens are necessary for accurate assessment of the role of HCV quantitation as a prognostic marker for HCV infection and monitoring of the response to antiviral treatment. Commercially available methods used to measure HCV loads include PCR-based (Roche Monitor) and hybridization-based (Quantiplex bDNA-2) methods. Recently, a new version of the Roche Monitor assay (version 2.0) has become available; it has been modified to achieve more equal quantitation of different HCV genotypes. Consistent with previous reports, Roche Monitor version 1.0 substantially underestimated concentrations of RNA transcripts of types 2b, 3a, 4a, 5a, and 6a and virus loads in individuals infected with genotypes 2 to 6 relative to reference tests. However, version 2.0 achieved equivalent quantitation of each genotype over a narrow quantitative range (103 to 5 × 105 copies of RNA/ml) but significantly underestimated RNA concentrations above this range. The assay showed an equivalent inability to quantify high levels of HCV RNA in plasma samples, and this was responsible for the falsely narrow range of virus loads detected in HCV-infected individuals. In contrast, the Chiron bDNA-2 assay could only measure RNA concentrations in the upper quantitative range (2 × 105 to 5 × 107 copies of RNA/ml) but showed equivalent sensitivity for genotypes 1 to 5; however, concentrations of type 6a RNA transcripts and virus loads in clinical specimens from individuals infected with type 6a were underestimated by a factor of 2 to 4. Differences were observed between PCR- and hybridization-based assays in their relative quantitation of HCV RNA transcripts and HCV genomic RNA, which may cause problems with the use of transcripts for interassay calibration.


2007 ◽  
Vol 82 (5) ◽  
pp. 2182-2195 ◽  
Author(s):  
Paul Targett-Adams ◽  
Steeve Boulant ◽  
John McLauchlan

ABSTRACT The mechanisms involved in hepatitis C virus (HCV) RNA replication are unknown, and this aspect of the virus life cycle is not understood. It is thought that virus-encoded nonstructural proteins and RNA genomes interact on rearranged endoplasmic reticulum (ER) membranes to form replication complexes, which are believed to be sites of RNA synthesis. We report that, through the use of an antibody specific for double-stranded RNA (dsRNA), dsRNA is readily detectable in Huh-7 cells that contain replicating HCV JFH-1 genomes but is absent in control cells. Therefore, as that of other RNA virus genomes, the replication of the HCV genome may involve the generation of a dsRNA replicative intermediate. In Huh-7 cells supporting HCV RNA replication, dsRNA was observed as discrete foci, associated with virus-encoded NS5A and core proteins and identical in morphology and distribution to structures containing HCV RNA visualized by fluorescence-based hybridization methods. Three-dimensional reconstruction of deconvolved z-stack images of virus-infected cells provided detailed insight into the relationship among dsRNA foci, NS5A, the ER, and lipid droplets (LDs). This analysis revealed that dsRNA foci were located on the surface of the ER and often surrounded, partially or wholly, by a network of ER-bound NS5A protein. Additionally, virus-induced dsRNA foci were juxtaposed to LDs, attached to the ER. Thus, we report the visualization of HCV-induced dsRNA foci, the likely sites of virus RNA replication, and propose that HCV genome synthesis occurs at LD-associated sites attached to the ER in virus-infected cells.


2005 ◽  
Vol 79 (3) ◽  
pp. 1569-1580 ◽  
Author(s):  
Gulam Waris ◽  
James Turkson ◽  
Tarek Hassanein ◽  
Aleem Siddiqui

ABSTRACT The hepatitis C virus (HCV) causes chronic hepatitis, which often results in liver cirrhosis and hepatocellular carcinoma. We have previously shown that HCV nonstructural proteins induce activation of STAT-3 via oxidative stress and Ca2+ signaling (G. Gong, G. Waris, R. Tanveer, and A. Siddiqui, Proc. Natl. Acad. Sci. USA 98:9599-9604, 2001). In this study, we focus on the signaling pathway leading to STAT-3 activation in response to oxidative stress induced by HCV translation and replication activities. Here, we demonstrate the constitutive activation of STAT-3 in HCV replicon-expressing cells. The HCV-induced STAT-3 activation was inhibited in the presence of antioxidant (pyrrolidine dithiocarbamate) and Ca2+ chelators (BAPTA-AM and TMB-8). Previous studies have shown that maximum STAT-3 transactivation requires Ser727 phosphorylation in addition to tyrosine phosphorylation. Using a series of inhibitors and dominant negative mutants, we show that HCV-induced activation of STAT-3 is mediated by oxidative stress and influenced by the activation of cellular kinases, including p38 mitogen-activated protein kinase, JNK, JAK-2, and Src. Our results also suggest a potential role of STAT-3 in HCV RNA replication. We also observed the constitutive activation of STAT-3 in the liver biopsy of an HCV-infected patient. These studies provide an insight into the mechanisms by which HCV induces intracellular events relevant to liver pathogenesis associated with the viral infection.


2016 ◽  
Vol 113 (44) ◽  
pp. 12484-12489 ◽  
Author(s):  
Ann L. Wozniak ◽  
Abby Long ◽  
Kellyann N. Jones-Jamtgaard ◽  
Steven A. Weinman

Hepatitis C virus (HCV) is an enveloped RNA virus that modifies intracellular trafficking processes. The mechanisms that HCV and other viruses use to modify these events are poorly understood. In this study, we observed that two different RNA viruses, HCV and Sendai, cause inhibition of ras-related protein Rab-7 (Rab7)-dependent endosome–lysosome fusion. In both cases, viral infection causes cleavage of the Rab7 adaptor protein RILP (Rab interacting lysosomal protein), which is responsible for linking Rab7 vesicles to dynein motor complexes. RILP cleavage results in the generation of a cleaved RILP fragment (cRILP) missing the N terminus of the molecule. Although RILP localizes in a perinuclear fashion, cRILP moves to the cell periphery. Both knockdown of RILP and expression of cRILP reproduced the HCV-induced trafficking defect, and restoring full-length RILP reversed the trafficking effects of virus. For the first 3 d after electroporation of HCV RNA, intracellular virus predominates over secreted virus, but the quantity of intracellular virus then rapidly declines as secreted virus dominates. The transition from the intracellular-predominant to the secretion-predominant phenotype corresponds to the time course of cRILP generation. Expressing cRILP directly prevents intracellular virus accumulation at early times without affecting net virus production. The ability of cRILP to promote virus secretion could be prevented by a kinesin inhibitor. HCV thus modifies cellular trafficking by cleaving RILP, which serves to redirect Rab7-containing vesicles to a kinesin-dependent trafficking mode promoting virion secretion. Cleavage of a Rab adaptor protein is thus a mechanism by which viruses modify trafficking patterns of infected cells.


2009 ◽  
Vol 83 (18) ◽  
pp. 9237-9246 ◽  
Author(s):  
Yutaka Amako ◽  
Ali Sarkeshik ◽  
Hak Hotta ◽  
John Yates ◽  
Aleem Siddiqui

ABSTRACT Hepatitis C virus (HCV) RNA genome replicates within the ribonucleoprotein (RNP) complex in the modified membranous structures extended from endoplasmic reticulum. A proteomic analysis of HCV RNP complexes revealed the association of oxysterol binding protein (OSBP) as one of the components of these complexes. OSBP interacted with the N-terminal domain I of the HCV NS5A protein and colocalized to the Golgi compartment with NS5A. An OSBP-specific short hairpin RNA that partially downregulated OSBP expression resulted in a decrease of the HCV particle release in culture supernatant with little effect on viral RNA replication. The pleckstrin homology (PH) domain located in the N-terminal region of OSBP targeted this protein to the Golgi apparatus. OSBP deletion mutation in the PH (ΔPH) domain failed to localize to the Golgi apparatus and inhibited the HCV particle release. These studies suggest a possible functional role of OSBP in the HCV maturation process.


2008 ◽  
Vol 82 (18) ◽  
pp. 9008-9022 ◽  
Author(s):  
Sinéad Diviney ◽  
Andrew Tuplin ◽  
Madeleine Struthers ◽  
Victoria Armstrong ◽  
Richard M. Elliott ◽  
...  

ABSTRACT The genome of hepatitis C virus (HCV) contains cis-acting replication elements (CREs) comprised of RNA stem-loop structures located in both the 5′ and 3′ noncoding regions (5′ and 3′ NCRs) and in the NS5B coding sequence. Through the application of several algorithmically independent bioinformatic methods to detect phylogenetically conserved, thermodynamically favored RNA secondary structures, we demonstrate a long-range interaction between sequences in the previously described CRE (5BSL3.2, now SL9266) with a previously predicted unpaired sequence located 3′ to SL9033, approximately 200 nucleotides upstream. Extensive reverse genetic analysis both supports this prediction and demonstrates a functional requirement in genome replication. By mutagenesis of the Con-1 replicon, we show that disruption of this alternative pairing inhibited replication, a phenotype that could be restored to wild-type levels through the introduction of compensating mutations in the upstream region. Substitution of the CRE with the analogous region of different genotypes of HCV produced replicons with phenotypes consistent with the hypothesis that both local and long-range interactions are critical for a fundamental aspect of genome replication. This report further extends the known interactions of the SL9266 CRE, which has also been shown to form a “kissing loop” interaction with the 3′ NCR (P. Friebe, J. Boudet, J. P. Simorre, and R. Bartenschlager, J. Virol. 79:380-392, 2005), and suggests that cooperative long-range binding with both 5′ and 3′ sequences stabilizes the CRE at the core of a complex pseudoknot. Alternatively, if the long-range interactions were mutually exclusive, the SL9266 CRE may function as a molecular switch controlling a critical aspect of HCV genome replication.


2007 ◽  
Vol 81 (8) ◽  
pp. 3852-3865 ◽  
Author(s):  
Chon Saeng Kim ◽  
Su Kyoung Seol ◽  
Ok-Kyu Song ◽  
Ji Hoon Park ◽  
Sung Key Jang

ABSTRACT Hepatitis C virus (HCV) is a positive-sense single-stranded RNA virus. NS5b is an RNA-dependent RNA polymerase that polymerizes the newly synthesized RNA. HCV likely uses host proteins for its replication, similar to other RNA viruses. To identify the cellular factors involved in HCV replication, we searched for cellular proteins that interact with the NS5b protein. HnRNP A1 and septin 6 proteins were identified by coimmunoprecipitation and yeast two-hybrid screening, respectively. Interestingly, septin 6 protein also interacts with hnRNP A1. Moreover, hnRNP A1 interacts with the 5′-nontranslated region (5′ NTR) and the 3′ NTR of HCV RNA containing the cis-acting elements required for replication. Knockdown of hnRNP A1 and overexpression of C-terminally truncated hnRNP A1 reduced HCV replication. In addition, knockdown of septin 6 and overexpression of N-terminally truncated septin 6 inhibited HCV replication. These results indicate that the host proteins hnRNP A1 and septin 6 play important roles in the replication of HCV through RNA-protein and protein-protein interactions.


2016 ◽  
Vol 113 (5) ◽  
pp. 1375-1380 ◽  
Author(s):  
Djamila Harouaka ◽  
Ronald E. Engle ◽  
Kurt Wollenberg ◽  
Giacomo Diaz ◽  
Ashley B. Tice ◽  
...  

Analysis of hepatitis C virus (HCV) replication and quasispecies distribution within the tumor of patients with HCV-associated hepatocellular carcinoma (HCC) can provide insight into the role of HCV in hepatocarcinogenesis and, conversely, the effect of HCC on the HCV lifecycle. In a comprehensive study of serum and multiple liver specimens from patients with HCC who underwent liver transplantation, we found a sharp and significant decrease in HCV RNA in the tumor compared with surrounding nontumorous tissues, but found no differences in multiple areas of control non-HCC cirrhotic livers. Diminished HCV replication was not associated with changes in miR-122 expression. HCV genetic diversity was significantly higher in livers containing HCC compared with control non-HCC cirrhotic livers. Tracking of individual variants demonstrated changes in the viral population between tumorous and nontumorous areas, the extent of which correlated with the decline in HCV RNA, suggesting HCV compartmentalization within the tumor. In contrast, compartmentalization was not observed between nontumorous areas and serum, or in controls between different areas of the cirrhotic liver or between liver and serum. Our findings indicate that HCV replication within the tumor is restricted and compartmentalized, suggesting segregation of specific viral variants in malignant hepatocytes.


2009 ◽  
Vol 83 (13) ◽  
pp. 6554-6565 ◽  
Author(s):  
Zhe Liu ◽  
Feng Yang ◽  
Jason M. Robotham ◽  
Hengli Tang

ABSTRACT Replication of hepatitis C virus (HCV) RNA occurs on intracellular membranes, and the replication complex (RC) contains viral RNA, nonstructural proteins, and cellular cofactors. We previously demonstrated that cyclophilin A (CyPA) is an essential cofactor for HCV infection and the intracellular target of cyclosporine's anti-HCV effect. Here we investigate the mechanism by which CyPA facilitates HCV replication. Cyclosporine treatment specifically blocked the incorporation of NS5B into the RC without affecting either the total protein level or the membrane association of the protein. Other nonstructural proteins or viral RNAs in the RC were not affected. NS5B from the cyclosporine-resistant replicon was resistant to this disruption of RC incorporation. We also isolated membrane fractions from both naïve and HCV-positive cells and found that CyPA is recruited into membrane fractions in HCV-replicating cells via an interaction with RC-associated NS5B, which is sensitive to cyclosporine treatment. Finally, we introduced point mutations in the prolyl-peptidyl isomerase (PPIase) motif of CyPA and demonstrated a critical role of this motif in HCV replication in cDNA rescue experiments. We propose a model in which the incorporation of the HCV polymerase into the RC depends on its interaction with a cellular chaperone protein and in which cyclosporine inhibits HCV replication by blocking this critical interaction and the PPIase activity of CyPA. Our results provide a mechanism of action for the cyclosporine-mediated inhibition of HCV and identify a critical role of CyPA's PPIase activity in the proper assembly and function of the HCV RC.


Sign in / Sign up

Export Citation Format

Share Document