scholarly journals Special Issue: G Protein-Coupled Adenosine Receptors: Molecular Aspects and Beyond

2020 ◽  
Vol 21 (6) ◽  
pp. 1997
Author(s):  
Francisco Ciruela

Adenosine is a purine nucleoside present in all human cells where it plays many different physiological roles: From being a building block for nucleic acids to a key constituent of the biological energy currency ATP [...]

2021 ◽  
pp. 247255522097979
Author(s):  
Kyung-Soon Lee ◽  
Edelmar Navaluna ◽  
Nicole M. Marsh ◽  
Eric M. Janezic ◽  
Chris Hague

We have developed a novel reporter assay that leverages SNAP-epitope tag/near-infrared (NIR) imaging technology to monitor G protein-coupled receptor (GPCR) degradation in human cell lines. N-terminal SNAP-tagged GPCRs were subcloned and expressed in human embryonic kidney (HEK) 293 cells and then subjected to 24 h of cycloheximide (CHX)-chase degradation assays to quantify receptor degradation half-lives ( t1/2) using LICOR NIR imaging–polyacrylamide gel electrophoresis (PAGE) analysis. Thus far, we have used this method to quantify t1/2 for all nine adrenergic (ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, ADRB2, ADRB3), five somatostatin (SSTR1, SSTR2, SSTR3, SSTR4, SSTR5), four chemokine (CXCR1, CXCR2, CXCR3, CXCR5), and three 5-HT2 (5HT2A, 5HT2B, 5HT2C) receptor subtypes. SNAP-GPCR-CHX degradation t1/2 values ranged from 0.52 h (ADRA1D) to 5.5 h (SSTR3). On the contrary, both the SNAP-tag alone and SNAP-tagged and endogenous β-actin were resistant to degradation with CHX treatment. Treatment with the proteasome inhibitor bortezomib produced significant but variable increases in SNAP-GPCR protein expression levels, indicating that SNAP-GPCR degradation primarily occurs through the proteasome. Remarkably, endogenous β2-adrenergic receptor/ADRB2 dynamic mass redistribution functional responses to norepinephrine were significantly decreased following CHX treatment, with a time course equivalent to that observed with the SNAP-ADRB2 degradation assay. We subsequently adapted this assay into a 96-well glass-bottom plate format to facilitate high-throughput GPCR degradation screening. t1/2 values quantified for the α1-adrenergic receptor subtypes (ADRA1A, ADRA1B, ADR1D) using the 96-well-plate format correlated with t1/2 values quantified using NIR-PAGE imaging analysis. In summary, this novel assay permits precise quantitative analysis of GPCR degradation in human cells and can be readily adapted to quantify degradation for any membrane protein of interest.


Author(s):  
Zhan-Guo Gao ◽  
Kenneth A. Jacobson

There are four subtypes of adenosine receptors (ARs), named A1, A2A, A2B and A3, all of which are G protein-coupled receptors. The A2BAR, coupled to both Gαi and Gαq G proteins, is one of the several G-protein-coupled receptors that are expressed in a significantly higher level in some cancer tissues in comparison to adjacent normal tissues. There is growing evidence that the A2BAR plays an important role in tumor cell proliferation, angiogenesis, metastasis, and immune suppression. Thus, A2BAR antagonists are potentially novel attractive anticancer agents. Several antagonists targeting at the A2BAR are currently in clinical trials for various types of cancers. In this review, we first describe the signaling, agonists, and antagonists of the A2BAR. We further discuss the role of the A2BAR in the progression of various types cancers, and the rationale of using A2BAR antagonists in cancer therapy


2014 ◽  
Vol 25 (10) ◽  
pp. 1847-1854 ◽  
Author(s):  
María Isabel Bahamonde ◽  
Jaume Taura ◽  
Silvia Paoletta ◽  
Andrei A. Gakh ◽  
Saibal Chakraborty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document