scholarly journals Molecular and Functional Phenotypes of Human Bone Marrow-Derived Mesenchymal Stromal Cells Depend on Harvesting Techniques

2020 ◽  
Vol 21 (12) ◽  
pp. 4382 ◽  
Author(s):  
Sebastian Walter ◽  
Thomas Randau ◽  
Cäcilia Hilgers ◽  
El-Mustapha Haddouti ◽  
Werner Masson ◽  
...  

Mesenchymal stromal cells (MSC) harvested in different tissues from the same donor exhibit different phenotypes. Each phenotype is not only characterized by a certain pattern of cell surface markers, but also different cellular functionalities. Only recently were different harvesting and processing techniques found to contribute to this phenomenon as well. This study was therefore set up to investigate proteomic and functional properties of human bone marrow-derived MSCs (hBM-MSC). These were taken from the same tissue and donor site but harvested either as aspirate or bone chip cultures. Both MSC populations were profiled for MSC markers defined by the International Society for Cellular Therapy (ISCT), MSC markers currently under discussion and markers of particular interest. While classic ISCT MSC markers did not show any significant difference between aspirate and outgrowth hBM-MSCs, our additional characterization panel revealed distinct patterns of differentially expressed markers. Furthermore, hBM-MSCs from aspirate cultures demonstrated a significantly higher osteogenic differentiation potential than outgrowth MSCs, which could be confirmed using a transcriptional approach. Our comparison of MSC phenotypes obtained by different harvesting techniques suggests the need of future standardized harvesting, processing and phenotyping procedures in order to gain better comparability in the MSC field.

2008 ◽  
Vol 8 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Rishi N. Sheth ◽  
Glen Manzano ◽  
Xiuming Li ◽  
Allan D. Levi

Object Human bone marrow stromal cells (hMSCs) constitute a potential source of pluripotent stem cells. In the present study, hMSCs were transplanted into an area of spinal cord contusion in nude rats to determine their survival, differentiation, potential for neuroprotection, and influence on axonal growth and functional recovery. Methods Twenty-nine animals received 6 × 105 hMSCs in 6 μl medium 1 week after a contusion, while 14 control animals received an injection of 6 μl medium alone. Basso–Beattie–Bresnahan (BBB) tests were performed weekly. The spinal cords were collected at 6 weeks posttransplantation for histological analysis and assessment of tissue injury. Results Immunostaining with anti–human mitochondria antibody and pretransplantation labeling with green fluorescent protein demonstrated that the grafted hMSCs survived and were capable of achieving a flattened appearance in the grafted area; however, none of the transplanted cells stained positively for human-specific neuronal, anti–neurofilament H or glial fibrillary acidic protein within the sites of engraftment. While neuronal or astrocytic differentiation was not seen, cells lining blood vessels in the vicinity of the transplant stained positively for anti–human endothelium CD105 antibody. Staining for anti–neurofilament H antibody demonstrated abundant axonlike structures around the transplanted area in the hMSC group. Tissue sparing analysis showed that animals with grafted hMSCs had a smaller area of contusion cyst compared with controls, but there was no significant difference between the two groups in BBB scores. Conclusions The grafted hMSCs survived for ≥ 6 weeks posttransplantation, although they did not differentiate into neural or glial cells. Cells with human endothelial characteristics were observed. Spinal cord–injured rats grafted with hMSCs had smaller contusion cavities, which did not have a significant influence on functional recovery.


Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06517
Author(s):  
Lyudmila M. Mezhevikina ◽  
Dmitriy A. Reshetnikov ◽  
Maria G. Fomkina ◽  
Nurbol O. Appazov ◽  
Saltanat Zh. Ibadullayeva ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun Takao ◽  
Taku Nakashima ◽  
Takeshi Masuda ◽  
Masashi Namba ◽  
Shinjiro Sakamoto ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are a potential therapeutic tool for pulmonary fibrosis. However, ex vivo MSC expansion using serum poses risks of harmful immune responses or unknown pathogen infections in the recipients. Therefore, MSCs cultured in serum-free media (SF-MSCs) are ideal for clinical settings; however, their efficacy in pulmonary fibrosis is unknown. Here, we investigated the effects of SF-MSCs on bleomycin-induced pulmonary inflammation and fibrosis compared to those of MSCs cultured in serum-containing media (S-MSCs). Methods SF-MSCs and S-MSCs were characterized in vitro using RNA sequence analysis. The in vivo kinetics and efficacy of SF-MSC therapy were investigated using a murine model of bleomycin-induced pulmonary fibrosis. For normally distributed data, Student’s t test and one-way repeated measures analysis of variance followed by post hoc Tukey’s test were used for comparison between two groups and multiple groups, respectively. For non-normally distributed data, Kruskal–Wallis and Mann–Whitney U tests were used for comparison between groups, using e Bonferroni’s correction for multiple comparisons. All tests were two-sided, and P < 0.05 was considered statistically significant. Results Serum-free media promoted human bone marrow-derived MSC expansion and improved lung engraftment of intravenously administered MSCs in recipient mice. SF-MSCs inhibited the reduction in serum transforming growth factor-β1 and the increase of interleukin-6 in both the serum and the bronchoalveolar lavage fluid during bleomycin-induced pulmonary fibrosis. SF-MSC administration increased the numbers of regulatory T cells (Tregs) in the blood and lungs more strongly than in S-MSC administration. Furthermore, SF-MSCs demonstrated enhanced antifibrotic effects on bleomycin-induced pulmonary fibrosis, which were diminished by antibody-mediated Treg depletion. Conclusions SF-MSCs significantly suppressed BLM-induced pulmonary inflammation and fibrosis through enhanced induction of Tregs into the lungs and corrected the dysregulated cytokine balance. Therefore, SF-MSCs could be a useful tool for preventing pulmonary fibrosis progression without the demerits of serum use.


Sign in / Sign up

Export Citation Format

Share Document