scholarly journals Discrimination between G/C Binding Sites by Olivomycin A Is Determined by Kinetics of the Drug-DNA Interaction

2020 ◽  
Vol 21 (15) ◽  
pp. 5299
Author(s):  
Artemy D. Beniaminov ◽  
Galina V. Chashchina ◽  
Mikhail A. Livshits ◽  
Olga I. Kechko ◽  
Vladimir A. Mitkevich ◽  
...  

Olivomycin A (OA) exerts its cytotoxic potency due to binding to the minor groove of the G/C-rich DNA and interfering with replication and transcription. Screening of the complete set of tetranucleotide G/C sites by electrophoretic mobility gel shift assay (EMSA) revealed that the sites containing central GC or GG dinucleotides were able to bind OA, whereas the sites with the central CG dinucleotide were not. However, studies of equilibrium OA binding in solution by fluorescence, circular dichroism and isothermal titration calorimetry failed to confirm the sequence preference of OA, indicating instead a similar type of complex and comparable affinity of OA to all G/C binding sites. This discrepancy was resolved by kinetics analysis of the drug–DNA interaction: the dissociation rate significantly differed between SGCS, SGGS and SCGS sites (S stands for G or C), thereby explaining the disintegration of the complexes during EMSA. The functional relevance of the revealed differential kinetics of OA–DNA interaction was demonstrated in an in vitro transcription assay. These findings emphasize the crucial role of kinetics in the mechanism of OA action and provide an important approach to the screening of new drug candidates.

2012 ◽  
Vol 449 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Chiara Saggioro ◽  
Anne Olliver ◽  
Bianca Sclavi

The DnaA protein is a key factor for the regulation of the timing and synchrony of initiation of bacterial DNA replication. The transcription of the dnaA gene in Escherichia coli is regulated by two promoters, dnaAP1 and dnaAP2. The region between these two promoters contains several DnaA-binding sites that have been shown to play an important role in the negative auto-regulation of dnaA expression. The results obtained in the present study using an in vitro and in vivo quantitative analysis of the effect of mutations to the high-affinity DnaA sites reveal an additional effect of positive autoregulation. We investigated the role of transcription autoregulation in the change of dnaA expression as a function of temperature. While negative auto-regulation is lost at dnaAP1, the effects of both positive and negative autoregulation are maintained at the dnaAP2 promoter upon lowering the growth temperature. These observations can be explained by the results obtained in vitro showing a difference in the temperature-dependence of DnaA–ATP binding to its high- and low-affinity sites, resulting in a decrease in DnaA–ATP oligomerization at lower temperatures. The results of the present study underline the importance of the role for autoregulation of gene expression in the cellular adaptation to different growth temperatures.


2019 ◽  
Vol 116 (17) ◽  
pp. 8310-8319 ◽  
Author(s):  
Patricia Sanchez-Vazquez ◽  
Colin N. Dewey ◽  
Nicole Kitten ◽  
Wilma Ross ◽  
Richard L. Gourse

The second messenger nucleotide ppGpp dramatically alters gene expression in bacteria to adjust cellular metabolism to nutrient availability. ppGpp binds to two sites on RNA polymerase (RNAP) inEscherichia coli, but it has also been reported to bind to many other proteins. To determine the role of the RNAP binding sites in the genome-wide effects of ppGpp on transcription, we used RNA-seq to analyze transcripts produced in response to elevated ppGpp levels in strains with/without the ppGpp binding sites on RNAP. We examined RNAs rapidly after ppGpp production without an accompanying nutrient starvation. This procedure enriched for direct effects of ppGpp on RNAP rather than for indirect effects on transcription resulting from starvation-induced changes in metabolism or on secondary events from the initial effects on RNAP. The transcriptional responses of all 757 genes identified after 5 minutes of ppGpp induction depended on ppGpp binding to RNAP. Most (>75%) were not reported in earlier studies. The regulated transcripts encode products involved not only in translation but also in many other cellular processes. In vitro transcription analysis of more than 100 promoters from the in vivo dataset identified a large collection of directly regulated promoters, unambiguously demonstrated that most effects of ppGpp on transcription in vivo were direct, and allowed comparison of DNA sequences from inhibited, activated, and unaffected promoter classes. Our analysis greatly expands our understanding of the breadth of the stringent response and suggests promoter sequence features that contribute to the specific effects of ppGpp.


2006 ◽  
Vol 175 (6) ◽  
pp. 947-955 ◽  
Author(s):  
Takushi Miyoshi ◽  
Takahiro Tsuji ◽  
Chiharu Higashida ◽  
Maud Hertzog ◽  
Akiko Fujita ◽  
...  

Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s−1, respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays.


Gene ◽  
1983 ◽  
Vol 23 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Jürg Meyer ◽  
Jasmin Gautschi ◽  
Margaretha Stålhammar-Carlemalm ◽  
Joachim Störl ◽  
Siegfried Klaus

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hajnalka Jankovics ◽  
Boglarka Kovacs ◽  
Andras Saftics ◽  
Tamas Gerecsei ◽  
Éva Tóth ◽  
...  

AbstractReliable measurement of the binding kinetics of low molecular weight analytes to their targets is still a challenging task. Often, the introduction of labels is simply impossible in such measurements, and the application of label-free methods is the only reliable choice. By measuring the binding kinetics of Ni(II) ions to genetically modified flagellin layers, we demonstrate that: (1) Grating-Coupled Interferometry (GCI) is well suited to resolve the binding of ions, even at very low protein immobilization levels; (2) it supplies high quality kinetic data from which the number and strength of available binding sites can be determined, and (3) the rate constants of the binding events can also be obtained with high accuracy. Experiments were performed using a flagellin variant incorporating the C-terminal domain of the nickel-responsive transcription factor NikR. GCI results were compared to affinity data from titration calorimetry. We found that besides the low-affinity binding sites characterized by a micromolar dissociation constant (Kd), tetrameric FliC-NikRC molecules possess high-affinity binding sites with Kd values in the nanomolar range. GCI enabled us to obtain real-time kinetic data for the specific binding of an analyte with molar mass as low as 59 Da, even at signals lower than 1 pg/mm2.


2021 ◽  
Author(s):  
Amir Shahein ◽  
Maria L&oacutepez-Malo ◽  
Ivan Istomin ◽  
Evan J. Olson ◽  
Shiyu Cheng ◽  
...  

Transcription factor binding to a single binding site and its functional consequence in a promoter context are beginning to be relatively well understood. However, binding to clusters of sites has yet to be characterized in depth, and the functional relevance of binding site clusters remains uncertain.We employed a high-throughput biochemical method to characterize transcription factor binding to clusters varying across a range of affinities and configurations. We found that transcription factors can bind concurrently to overlapping sites, challenging the notion of binding exclusivity. Further-more, compared to an individual high-affinity binding site, small clusters with binding sites an order of magnitude lower in affinity give rise to higher mean occupancies at physiologically-relevant transcription factor concentrations in vitro. To assess whether the observed in vitro occupancies translate to transcriptional activation in vivo, we tested low-affinity binding site clusters by inserting them into a synthetic minimal CYC1 and the native PHO5 S. cerevisiae promoter. In the minCYC1 promoter, clusters of low-affinity binding sites can generate transcriptional output comparable to a promoter containing three consensus binding sites. In the PHO5 promoter, replacing the native Pho4 binding sites with clusters of low-affinity binding sites recovered activation of these promoters as well. This systematic characterization demonstrates that clusters of low-affinity binding sites achieve substantial occupancies, and that this occupancy can drive expression in eukaryotic promoters


Sign in / Sign up

Export Citation Format

Share Document