scholarly journals Actin turnover–dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing

2006 ◽  
Vol 175 (6) ◽  
pp. 947-955 ◽  
Author(s):  
Takushi Miyoshi ◽  
Takahiro Tsuji ◽  
Chiharu Higashida ◽  
Maud Hertzog ◽  
Akiko Fujita ◽  
...  

Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s−1, respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays.

2020 ◽  
pp. jbc.RA120.015863
Author(s):  
Venukumar Vemula ◽  
Tamás Huber ◽  
Marko Ušaj ◽  
Beáta Bugyi ◽  
Alf Mansson

Actin is a major intracellular protein with key functions in cellular motility, signaling and structural rearrangements. Its dynamic behavior, such as polymerisation and depolymerisation of actin filaments in response to intra- and extracellular cues, is regulated by an abundance of actin binding proteins. Out of these, gelsolin is one of the most potent for filament severing. However, myosin motor activity also fragments actin filaments through motor induced forces, suggesting that these two proteins could cooperate to regulate filament dynamics and motility. To test this idea, we used an in vitro motility assay, where actin filaments are propelled by surface-adsorbed heavy meromyosin (HMM) motor fragments. This allows studies of both motility and filament dynamics using isolated proteins. Gelsolin, at both nanomolar and micromolar Ca2+ concentration, appreciably enhanced actin filament severing caused by HMM-induced forces at 1 mM MgATP, an effect that was increased at higher HMM motor density. This finding is consistent with cooperativity between actin filament severing by myosin-induced forces and by gelsolin. We also observed reduced sliding velocity of the HMM-propelled filaments in the presence of gelsolin, providing further support of myosin-gelsolin cooperativity. Total internal reflection fluorescence microscopy based single molecule studies corroborated that the velocity reduction was a direct effect of gelsolin-binding to the filament and revealed different filament severing pattern of stationary and HMM propelled filaments. Overall, the results corroborate cooperative effects between gelsolin-induced alterations in the actin filaments and changes due to myosin motor activity leading to enhanced F-actin severing of possible physiological relevance.


Author(s):  
Ilina Bareja ◽  
Hugo Wioland ◽  
Miro Janco ◽  
Philip R. Nicovich ◽  
Antoine Jégou ◽  
...  

ABSTRACTTropomyosins regulate dynamics and functions of the actin cytoskeleton by forming long chains along the two strands of actin filaments that act as gatekeepers for the binding of other actin-binding proteins. The fundamental molecular interactions underlying the binding of tropomyosin to actin are still poorly understood. Using microfluidics and fluorescence microscopy, we observed the binding of fluorescently labelled tropomyosin isoform Tpm1.8 to unlabelled actin filaments in real time. This approach in conjunction with mathematical modeling enabled us to quantify the nucleation, assembly and disassembly kinetics of Tpm1.8 on single filaments and at the single molecule level. Our analysis suggests that Tpm1.8 decorates the two strands of the actin filament independently. Nucleation of a growing tropomyosin domain proceeds with high probability as soon as the first Tpm1.8 molecule is stabilised by the addition of a second molecule, ultimately leading to full decoration of the actin filament. In addition, Tpm1.8 domains are asymmetrical, with enhanced dynamics at the edge oriented towards the barbed end of the actin filament. The complete description of Tpm1.8 kinetics on actin filaments presented here provides molecular insight into actin-tropomyosin filament formation and the role of tropomyosins in regulating actin filament dynamics.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shashank Shekhar ◽  
Johnson Chung ◽  
Jane Kondev ◽  
Jeff Gelles ◽  
Bruce L. Goode

AbstractCellular actin networks can be rapidly disassembled and remodeled in a few seconds, yet in vitro actin filaments depolymerize slowly over minutes. The cellular mechanisms enabling actin to depolymerize this fast have so far remained obscure. Using microfluidics-assisted TIRF, we show that Cyclase-associated protein (CAP) and Cofilin synergize to processively depolymerize actin filament pointed ends at a rate 330-fold faster than spontaneous depolymerization. Single molecule imaging further reveals that hexameric CAP molecules interact with the pointed ends of Cofilin-decorated filaments for several seconds at a time, removing approximately 100 actin subunits per binding event. These findings establish a paradigm, in which a filament end-binding protein and a side-binding protein work in concert to control actin dynamics, and help explain how rapid actin network depolymerization is achieved in cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Matthias Schaks ◽  
Klemens Rottner ◽  
Stefan Raunser ◽  
...  

AbstractHeterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP’s C-terminal “tentacle” extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the β tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes—capping and nucleation—in branched actin network assembly.


2007 ◽  
Vol 282 (38) ◽  
pp. 28014-28024 ◽  
Author(s):  
Jeffrey R. Kuhn ◽  
Thomas D. Pollard

We investigated how heterodimeric capping proteins bind to and dissociate from the barbed ends of actin filaments by observing single muscle actin filaments by total internal reflection fluorescence microscopy. The barbed end rate constants for mouse capping protein (CP) association of 2.6 × 106m-1 s-1 and dissociation of 0.0003 s-1 agree with published values measured in bulk assays. The polyphosphoinositides (PPIs), phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), PI(4,5)P2, and PI(3,4,5)P3, prevent CP from binding to barbed ends, but three different assays showed that none of these lipids dissociate CP from filaments at concentrations that block CP binding to barbed ends. The affinity of fission yeast CP for barbed ends is a thousandfold less than mouse CP, because of a slower association rate constant (1.1 × 105m-1 s-1) and a faster dissociation rate constant (0.004 s-1). PPIs do not inhibit binding of fission yeast CP to filament ends. Comparison of homology models revealed that fission yeast CP lacks a large patch of basic residues along the actin-binding surface on mouse CP. PPIs binding to this site might interfere sterically with capping, but this site would be inaccessible when CP is bound to the end of a filament.


2020 ◽  
Vol 31 (22) ◽  
pp. 2452-2462
Author(s):  
Ilina Bareja ◽  
Hugo Wioland ◽  
Miro Janco ◽  
Philip R. Nicovich ◽  
Antoine Jégou ◽  
...  

Characterization of the kinetics of Tpm1.8 binding to actin filaments with single-molecule resolution. This work provides molecular insight into actin–tropomyosin filament formation and the role of tropomyosins in regulating actin filament dynamics.


2020 ◽  
Vol 295 (45) ◽  
pp. 15366-15375
Author(s):  
Majdouline Abou-Ghali ◽  
Remy Kusters ◽  
Sarah Körber ◽  
John Manzi ◽  
Jan Faix ◽  
...  

Heterodimeric capping protein (CP) binds the rapidly growing barbed ends of actin filaments and prevents the addition (or loss) of subunits. Capping activity is generally considered to be essential for actin-based motility induced by Arp2/3 complex nucleation. By stopping barbed end growth, CP favors nucleation of daughter filaments at the functionalized surface where the Arp2/3 complex is activated, thus creating polarized network growth, which is necessary for movement. However, here using an in vitro assay where Arp2/3 complex-based actin polymerization is induced on bead surfaces in the absence of CP, we produce robust polarized actin growth and motility. This is achieved either by adding the actin polymerase Ena/VASP or by boosting Arp2/3 complex activity at the surface. Another actin polymerase, the formin FMNL2, cannot substitute for CP, showing that polymerase activity alone is not enough to override the need for CP. Interfering with the polymerase activity of Ena/VASP, its surface recruitment or its bundling activity all reduce Ena/VASP's ability to maintain polarized network growth in the absence of CP. Taken together, our findings show that CP is dispensable for polarized actin growth and motility in situations where surface-directed polymerization is favored by whatever means over the growth of barbed ends in the network.


1998 ◽  
Vol 143 (7) ◽  
pp. 1919-1930 ◽  
Author(s):  
Dorothy A. Schafer ◽  
Matthew D. Welch ◽  
Laura M. Machesky ◽  
Paul C. Bridgman ◽  
Shelley M. Meyer ◽  
...  

Actin filament assembly is critical for eukaryotic cell motility. Arp2/3 complex and capping protein (CP) regulate actin assembly in vitro. To understand how these proteins regulate the dynamics of actin filament assembly in a motile cell, we visualized their distribution in living fibroblasts using green flourescent protein (GFP) tagging. Both proteins were concentrated in motile regions at the cell periphery and at dynamic spots within the lamella. Actin assembly was required for the motility and dynamics of spots and for motility at the cell periphery. In permeabilized cells, rhodamine-actin assembled at the cell periphery and at spots, indicating that actin filament barbed ends were present at these locations. Inhibition of the Rho family GTPase rac1, and to a lesser extent cdc42 and RhoA, blocked motility at the cell periphery and the formation of spots. Increased expression of phosphatidylinositol 5-kinase promoted the movement of spots. Increased expression of LIM–kinase-1, which likely inactivates cofilin, decreased the frequency of moving spots and led to the formation of aggregates of GFP–CP. We conclude that spots, which appear as small projections on the surface by whole mount electron microscopy, represent sites of actin assembly where local and transient changes in the cortical actin cytoskeleton take place.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Luyan Cao ◽  
Mikael Kerleau ◽  
Emiko L. Suzuki ◽  
Hugo Wioland ◽  
Sandy Jouet ◽  
...  

Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.


Sign in / Sign up

Export Citation Format

Share Document