scholarly journals Cdc-Like Kinases (CLKs): Biology, Chemical Probes, and Therapeutic Potential

2020 ◽  
Vol 21 (20) ◽  
pp. 7549
Author(s):  
Paula Martín Moyano ◽  
Václav Němec ◽  
Kamil Paruch

Protein kinases represent a very pharmacologically attractive class of targets; however, some members of the family still remain rather unexplored. The biology and therapeutic potential of cdc-like kinases (CLKs) have been explored mainly over the last decade and the first CLK inhibitor, compound SM08502, entered clinical trials only recently. This review summarizes the biological roles and therapeutic potential of CLKs and their heretofore published small-molecule inhibitors, with a focus on the compounds’ potential to be utilized as quality chemical biology probes.

2017 ◽  
Author(s):  
David H. Drewry ◽  
Carrow I. Wells ◽  
David M. Andrews ◽  
Richard Angell ◽  
Hassan Al-Ali ◽  
...  

AbstractProtein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases.


2019 ◽  
Vol 20 (11) ◽  
pp. 1091-1111 ◽  
Author(s):  
Maryam Zanjirband ◽  
Soheila Rahgozar

MDM2 protein is the core negative regulator of p53 that maintains the cellular levels of p53 at a low level in normal cells. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies with wild-type TP53, p53 function is inhibited through other mechanisms. Recently, synthetic small molecule inhibitors have been developed which target a small hydrophobic pocket on MDM2 to which p53 normally binds. Given that MDM2-p53 antagonists have been undergoing clinical trials for different types of cancer, this review illustrates different aspects of these new cancer targeted therapeutic agents with the focus on the major advances in the field. It emphasizes on the p53 function, regulation of p53, targeting of the p53-MDM2 interaction for cancer therapy, and p53-dependent and -independent effects of inhibition of p53-MDM2 interaction. Then, representatives of small molecule MDM2-p53 binding antagonists are introduced with a focus on those entered into clinical trials. Furthermore, the review discusses the gene signatures in order to predict sensitivity to MDM2 antagonists, potential side effects and the reasons for the observed hematotoxicity, mechanisms of resistance to these drugs, their evaluation as monotherapy or in combination with conventional chemotherapy or with other targeted therapeutic agents. Finally, it highlights the certainly intriguing questions and challenges which would be addressed in future studies.


2018 ◽  
Vol 52 (3) ◽  
pp. 478-487 ◽  
Author(s):  
D. A. Karasev ◽  
A. V. Veselovsky ◽  
A. A. Lagunin ◽  
D. A. Filimonov ◽  
B. N. Sobolev

2020 ◽  
Vol 117 (40) ◽  
pp. 24802-24812 ◽  
Author(s):  
Salima Daou ◽  
Manisha Talukdar ◽  
Jinle Tang ◽  
Beihua Dong ◽  
Shuvojit Banerjee ◽  
...  

The oligoadenylate synthetase (OAS)–RNase L system is an IFN-inducible antiviral pathway activated by viral infection. Viral double-stranded (ds) RNA activates OAS isoforms that synthesize the second messenger 2-5A, which binds and activates the pseudokinase-endoribonuclease RNase L. In cells, OAS activation is tamped down by ADAR1, an adenosine deaminase that destabilizes dsRNA. Mutation of ADAR1 is one cause of Aicardi-Goutières syndrome (AGS), an interferonopathy in children. ADAR1 deficiency in human cells can lead to RNase L activation and subsequent cell death. To evaluate RNase L as a possible therapeutic target for AGS, we sought to identify small-molecule inhibitors of RNase L. A 500-compound library of protein kinase inhibitors was screened for modulators of RNase L activity in vitro. We identified ellagic acid (EA) as a hit with 10-fold higher selectivity against RNase L compared with its nearest paralog, IRE1. SAR analysis identified valoneic acid dilactone (VAL) as a superior inhibitor of RNase L, with 100-fold selectivity over IRE1. Mechanism-of-action analysis indicated that EA and VAL do not bind to the pseudokinase domain of RNase L despite acting as ATP competitive inhibitors of the protein kinase CK2. VAL is nontoxic and functional in cells, although with a 1,000-fold decrease in potency, as measured by RNA cleavage activity in response to treatment with dsRNA activator or by rescue of cell lethality resulting from self dsRNA induced by ADAR1 deficiency. These studies lay the foundation for understanding novel modes of regulating RNase L function using small-molecule inhibitors and avenues of therapeutic potential.


2006 ◽  
Vol 6 (10) ◽  
pp. 1101-1110 ◽  
Author(s):  
R. Griffith ◽  
M. N. Brown ◽  
A. McCluskey ◽  
L. K. Ashman

2016 ◽  
Vol 18 (4) ◽  
pp. 898-913 ◽  
Author(s):  
Zhiwei Feng ◽  
Larry V. Pearce ◽  
Yu Zhang ◽  
Changrui Xing ◽  
Brienna K. A. Herold ◽  
...  

2019 ◽  
Vol 3 (s1) ◽  
pp. 1-2
Author(s):  
Saugat Adhikari ◽  
Harlan E. Shannon ◽  
Karen E. Pollok ◽  
Robert E. Stratford

OBJECTIVES/SPECIFIC AIMS: Despite advancements in therapies, such as surgery, irradiation (IR) and chemotherapy, outcome for patients suffering from glioblastoma remains fatal; the median survival rate is only about 15 months. Even with novel therapeutic targets, networks and signaling pathways being discovered, monotherapy with such agents targeting such pathways has been disappointing in clinical trials. Poor prognosis for GBM can be attributed to several factors, including failure of drugs to cross the blood-brain-barrier (BBB), tumor heterogeneity, metastasis and angiogenesis. Development of tumor resistance, particularly to temozolomide (TMZ), creates a substantial clinical challenge.The primary focus of our work is to rationally develop novel combination therapies and dose regimens that mitigate resistance development. Specifically, our aim is to combine TMZ with small molecule inhibitors that are either currently in clinical trials or are approved drugs for other cancer types, and which target the disease at various resistance signaling pathways that are induced in response to TMZ monotherapy. METHODS/STUDY POPULATION: To accomplish this objective, an integrated PKPD modeling approach is used. The approach is largely based on the work of Cardilin, et al, 2018. A PK model for each drug is first defined. This is subsequently linked to a PD model description of tumor growth dynamics in the presence of a single drug or combinations of drugs. A key outcome of these combined PKPD models are tumor static concentration (TSC) curves of dual or triple combination drug regimens that identify combination drug exposures predicted to arrest tumor growth. This approach has been applied to TMZ in combination with abemaciclib (a dual CDK4/6 small molecule inhibitor) based on data from a published study evaluating abemaciclib efficacy in combination with TMZ in a glioblastoma xenograft model (Raub, et al, 2015). RESULTS/ANTICIPATED RESULTS: A PKPD model was developed to predict tumor growth kinetics for TMZ and abemaciclib monotherapy, as well as combination therapy. Population PK models in immune deficient NSG mice for temozolomide and abemaciclib were developed based on data obtained from original and published studies. Subsequently, the PK model was linked to tumor volume data obtained from U87-MG GBM subcutaneous xenografts, again using both original data as well as data from the Raub, et al, 2015 study. Model parameters quantifying tumor volume dynamics were precisely estimated (coefficient of variation < 30%). The developed PKPD model was used to calculate plasma concentrations of TMZ and abemaciclib that would arrest tumor growth, as well as combinations of concentrations of the two drugs that would accomplish the same endpoint. This so-called TSC curve for the TMZ and abemaciclib combination pair evidenced an additive effect of the two agents when administered together. These results will be presented. In addition, results from on-going PKPD studies of TMZ in combination with two other small molecule inhibitors, RG7388, an MDM2 inhibitor, and GDC0068, an AKT inhibitor, will also be presented. DISCUSSION/SIGNIFICANCE OF IMPACT: Our long-term goals are to further elucidate SOC-induced responses in GBM and establish combination treatment regimens that are safe and significantly improve therapeutic efficacy. Collectively, our studies will broadly influence chemotherapy of GBM by establishing a process to rationally design combination approaches that mitigate resistance development. These studies will ultimately provide opportunities to study other targeted agents tailored to individual molecular signatures of GBM, as well as other tumor types.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 698 ◽  
Author(s):  
Dibyendu Dana ◽  
Sanjai K. Pathak

Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.


Sign in / Sign up

Export Citation Format

Share Document