scholarly journals Frontiers in Dissecting and Managing Brassica Diseases: From Reference-Based RGA Candidate Identification to Building Pan-RGAomes

2020 ◽  
Vol 21 (23) ◽  
pp. 8964
Author(s):  
Yueqi Zhang ◽  
William Thomas ◽  
Philipp E. Bayer ◽  
David Edwards ◽  
Jacqueline Batley

The Brassica genus contains abundant economically important vegetable and oilseed crops, which are under threat of diseases caused by fungal, bacterial and viral pathogens. Resistance gene analogues (RGAs) are associated with quantitative and qualitative disease resistance and the identification of candidate RGAs associated with disease resistance is crucial for understanding the mechanism and management of diseases through breeding. The availability of Brassica genome assemblies has greatly facilitated reference-based quantitative trait loci (QTL) mapping for disease resistance. In addition, pangenomes, which characterise both core and variable genes, have been constructed for B. rapa, B. oleracea and B. napus. Genome-wide characterisation of RGAs using conserved domains and motifs in reference genomes and pangenomes reveals their clustered arrangements and presence of structural variations. Here, we comprehensively review RGA identification in important Brassica genome and pangenome assemblies. Comparison of the RGAs in QTL between resistant and susceptible individuals allows for efficient identification of candidate disease resistance genes. However, the reference-based QTL mapping and RGA candidate identification approach is restricted by the under-represented RGA diversity characterised in the limited number of Brassica assemblies. The species-wide repertoire of RGAs make up the pan-resistance gene analogue genome (pan-RGAome). Building a pan-RGAome, through either whole genome resequencing or resistance gene enrichment sequencing, would effectively capture RGA diversity, greatly expanding breeding resources that can be utilised for crop improvement.

2012 ◽  
Vol 34 (1) ◽  
pp. 56
Author(s):  
Ling CHEN ◽  
Hao ZHANG ◽  
Xian-Qin QIU ◽  
Hui-Jun YAN ◽  
Qi-Gang WANG ◽  
...  

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1961-1977
Author(s):  
Michelle A Graham ◽  
Laura Fredrick Marek ◽  
Randy C Shoemaker

Abstract PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar “Williams 82” [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca2+-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Alessandra F Ribas ◽  
Alberto Cenci ◽  
Marie-Christine Combes ◽  
Hervé Etienne ◽  
Philippe Lashermes

2012 ◽  
Vol 159 (1) ◽  
pp. 336-354 ◽  
Author(s):  
Tom Ashfield ◽  
Ashley N. Egan ◽  
Bernard E. Pfeil ◽  
Nicolas W.G. Chen ◽  
Ram Podicheti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document