scholarly journals Novel Biallelic Variants and Phenotypic Features in Patients with SLC38A8-Related Foveal Hypoplasia

2021 ◽  
Vol 22 (3) ◽  
pp. 1130
Author(s):  
Elena R. Schiff ◽  
Vijay K. Tailor ◽  
Hwei Wuen Chan ◽  
Maria Theodorou ◽  
Andrew R. Webster ◽  
...  

Biallelic pathogenic variants in solute carrier family 38 member 8, SLC38A8, cause a pan-ocular autosomal recessive condition known as foveal hypoplasia 2, FVH2, characterised by foveal hypoplasia, nystagmus and optic nerve chiasmal misrouting. Patients are often clinically diagnosed with ocular albinism, but foveal hypoplasia can occur in several other ocular disorders. Here we describe nine patients from seven families who had molecularly confirmed biallelic recessive variants in SLC38A8 identified through whole genome sequencing or targeted gene panel testing. We identified four novel sequence variants (p.(Tyr88*), p.(Trp145*), p.(Glu233Gly) and c.632+1G>A). All patients presented with foveal hypoplasia, nystagmus and reduced visual acuity; however, one patient did not exhibit any signs of chiasmal misrouting, and three patients had features of anterior segment dysgenesis. We highlight these findings in the context of 30 other families reported to date. This study reinforces the importance of obtaining a molecular diagnosis in patients whose phenotype overlap with other inherited ocular conditions, in order to support genetic counselling, clinical prognosis and family planning. We expand the spectrum of SLC38A8 mutations which will be relevant for treatment through future genetic-based therapies.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Patrick Campbell ◽  
Jamie M. Ellingford ◽  
Neil R. A. Parry ◽  
Tracy Fletcher ◽  
Simon C. Ramsden ◽  
...  

Abstract Individuals who have ocular features of albinism and skin pigmentation in keeping with their familial background present a considerable diagnostic challenge. Timely diagnosis through genomic testing can help avert diagnostic odysseys and facilitates accurate genetic counselling and tailored specialist management. Here, we report the clinical and gene panel testing findings in 12 children with presumed ocular albinism. A definitive molecular diagnosis was made in 8/12 probands (67%) and a possible molecular diagnosis was identified in a further 3/12 probands (25%). TYR was the most commonly mutated gene in this cohort (75% of patients, 9/12). A disease-causing TYR haplotype comprised of two common, functional polymorphisms, TYR c.[575 C > A;1205 G > A] p.[(Ser192Tyr);(Arg402Gln)], was found to be particularly prevalent. One participant had GPR143-associated X-linked ocular albinism and another proband had biallelic variants in SLC38A8, a glutamine transporter gene associated with foveal hypoplasia and optic nerve misrouting without pigmentation defects. Intriguingly, 2/12 individuals had a single, rare, likely pathogenic variant in each of TYR and OCA2 – a significant enrichment compared to a control cohort of 4046 individuals from the 100,000 genomes project pilot dataset. Overall, our findings highlight that panel-based genetic testing is a clinically useful test with a high diagnostic yield in children with partial/ocular albinism.


2021 ◽  
Author(s):  
Elke M. van Veen ◽  
D. Gareth Evans ◽  
Elaine F. Harkness ◽  
Helen J. Byers ◽  
Jamie M. Ellingford ◽  
...  

AbstractPurpose: Lobular breast cancer (LBC) accounts for ~ 15% of breast cancer. Here, we studied the frequency of pathogenic germline variants (PGVs) in an extended panel of genes in women affected with LBC. Methods: 302 women with LBC and 1567 without breast cancer were tested for BRCA1/2 PGVs. A subset of 134 LBC affected women who tested negative for BRCA1/2 PGVs underwent extended screening, including: ATM, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51D, and TP53.Results: 35 PGVs were identified in the group with LBC, of which 22 were in BRCA1/2. Ten actionable PGVs were identified in additional genes (ATM(4), CDH1(1), CHEK2(1), PALB2(2) and TP53(2)). Overall, PGVs in three genes conferred a significant increased risk for LBC. Odds ratios (ORs) were: BRCA1: OR = 13.17 (95%CI 2.83–66.38; P = 0.0017), BRCA2: OR = 10.33 (95%CI 4.58–23.95; P < 0.0001); and ATM: OR = 8.01 (95%CI 2.52–29.92; P = 0.0053). We did not detect an increased risk of LBC for PALB2, CDH1 or CHEK2. Conclusion: The overall PGV detection rate was 11.59%, with similar rates of BRCA1/2 (7.28%) PGVs as for other actionable PGVs (7.46%), indicating a benefit for extended panel genetic testing in LBC. We also report a previously unrecognised association of pathogenic variants in ATM with LBC.


2021 ◽  
Vol 32 ◽  
pp. S432-S433
Author(s):  
C. Filorizzo ◽  
D. Fanale ◽  
L. Incorvaia ◽  
N. Barraco ◽  
M. Bono ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Hikmat Abdel-Razeq

Since the identification of BRCA1 and BRCA2 genes 3 decades ago, genetic testing and genetic counseling have become an integral part of routine clinical practice. The risk of breast cancer among carriers of germline pathogenic variants, like BRCA1 and BRCA2, is well established. Risk-reducing interventions, including bilateral mastectomies and salpingo-oophorectomies are both effective and have become more acceptable. Many researchers and professional societies view current guidelines as restrictive and may miss many at-risk women, and are calling to expand testing to include all patients with breast cancer, regardless of their personal or family history of cancer, while others are calling for wider adoption to even include all healthy women at age 30 or older. This review will address expanding testing in two directions; horizontally to include more patients, and even healthy women, and vertically to include more genes using next-generation sequencing-based multi-gene panel testing.


Heart ◽  
2020 ◽  
pp. heartjnl-2020-316798
Author(s):  
Monica Ahluwalia ◽  
Carolyn Y Ho

Genetic testing in hypertrophic cardiomyopathy (HCM) is a valuable tool to manage patients and their families. Genetic testing can help inform diagnosis and differentiate HCM from other disorders that also result in increased left ventricular wall thickness, thereby directly impacting treatment. Moreover, genetic testing can definitively identify at-risk relatives and focus family management. Pathogenic variants in sarcomere and sarcomere-related genes have been implicated in causing HCM, and targeted gene panel testing is recommended for patients once a clinical diagnosis has been established. If a pathogenic or likely pathogenic variant is identified in a patient with HCM, predictive genetic testing is recommended for their at-risk relatives to determine who is at risk and to guide longitudinal screening and risk stratification. However, there are important challenges and considerations to implementing genetic testing in clinical practice. Genetic testing results can have psychological and other implications for patients and their families, emphasising the importance of genetic counselling before and after genetic testing. Determining the clinical relevance of genetic testing results is also complex and requires expertise in understanding of human genetic variation and clinical manifestations of the disease. In this review, we discuss the genetics of HCM and how to integrate genetic testing in clinical practice.


2019 ◽  
Vol 27 (2) ◽  
Author(s):  
M. Aronson ◽  
C. Swallow ◽  
A. Govindarajan ◽  
K. Semotiuk ◽  
Z. Cohen ◽  
...  

Background CDH1 pathogenic variants (PV) cause the majority of inherited diffuse-gastric cancer (DGC), but have low detection rates and vary geographically. This study examines hereditary causes of DGC in patients from Ontario, Canada. Methods Eligible DGC cases at the Zane Cohen Centre (ZCC) underwent multi-gene panel or CDH1 single-site testing if they met 2015 International Gastric Cancer Linkage Consortium (IGCLC) criteria, isolated DGC <50 or family history suggestive of an inherited cancer syndrome. A secondary aim was to review all CDH1 families at the ZCC to assess cancer penetrance. Results 85 DGC patients underwent CDH1 (n=43) or multi-gene panel testing (n=42), and 15 (17.6%) PV or likely PV were identified.  CDH1 detection rate was 9.4% (n=8/85), and 11% (n=7/65) using IGCLC criteria.  No CDH1 PV identified in isolated DGC <40, but one PV identified in isolated DGC<50.  Multi-gene panel from 42 individuals identified 9 PV (21.4%) including CDH1, STK11, ATM, BRCA2, MLH1 and MSH2.  Review of 81 CDH1 carriers revealed that 10% had DGC (median age:48, range:38-59), 41% were unaffected (median age:53, range:26-89).  Three families had lobular-breast cancer (LBC) only.  Non-DGC/LBC malignancies included colorectal, gynecological, kidney/bladder, prostate, testicular and ductal breast. Conclusions Low detection rate of CDH1 in Ontario DGC patients.  No CDH1 PV found in isolated DGC <40, but identified in isolated DGC<50. Multi-gene panels are recommended for all DGC under age 50, and those meeting the IGCLC criteria, given overlapping phenotype with other hereditary conditions. HDGC phenotype is evolving with a spectrum of non-DGC/LBC cancers.


2019 ◽  
Vol 57 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Florentia Fostira ◽  
Irene Kostantopoulou ◽  
Paraskevi Apostolou ◽  
Myrto S Papamentzelopoulou ◽  
Christos Papadimitriou ◽  
...  

BackgroundGene panel testing has become the norm for assessing breast cancer (BC) susceptibility, but actual cancer risks conferred by genes included in panels are not established. Contrarily, deciphering the missing hereditability on BC, through identification of novel candidates, remains a challenge. We aimed to investigate the mutation prevalence and spectra in a highly selected cohort of Greek patients with BC, questioning an extensive number of genes, implicated in cancer predisposition and DNA repair, while calculating gene-specific BC risks that can ultimately lead to important associations.MethodsTo further discern BC susceptibility, a comprehensive 94-cancer gene panel was implemented in a cohort of 1382 Greek patients with BC, highly selected for strong family history and/or very young age (<35 years) at diagnosis, followed by BC risk calculation, based on a case–control analysis.ResultsHerein, 31.5% of patients tested carried pathogenic variants (PVs) in 28 known, suspected or candidate BC predisposition genes. In total, 24.8% of the patients carried BRCA1/2 loss-of-function variants. An additional 6.7% carried PVs in additional genes, the vast majority of which can be offered meaningful clinical changes. Significant association to BC predisposition was observed for ATM, PALB2, TP53, RAD51C and CHEK2 PVs. Primarily, compared with controls, RAD51C PVs and CHEK2 damaging missense variants were associated with high (ORs 6.19 (Exome Aggregation Consortium (ExAC)) and 12.6 (Fabulous Ladies Over Seventy (FLOSSIES)), p<0.01) and moderate BC risk (ORs 3.79 (ExAC) and 5.9 (FLOSSIES), p<0.01), respectively.ConclusionStudying a large and unique cohort of highly selected patients with BC, deriving from a population with founder effects, provides important insight on distinct associations, pivotal for patient management.


2020 ◽  
pp. jmedgenet-2020-107150
Author(s):  
Guillaume Olivier ◽  
Marta Corton ◽  
Daniela Intartaglia ◽  
Sanne K Verbakel ◽  
Panagiotis I Sergouniotis ◽  
...  

BackgroundInherited retinal disorders are a clinically and genetically heterogeneous group of conditions and a major cause of visual impairment. Common disease subtypes include vitelliform macular dystrophy (VMD) and retinitis pigmentosa (RP). Despite the identification of over 90 genes associated with RP, conventional genetic testing fails to detect a molecular diagnosis in about one third of patients with RP.MethodsExome sequencing was carried out for identifying the disease-causing gene in a family with autosomal dominant RP. Gene panel testing and exome sequencing were performed in 596 RP and VMD families to identified additional IMPG1 variants. In vivo analysis in the medaka fish system by knockdown assays was performed to screen IMPG1 possible pathogenic role.ResultsExome sequencing of a family with RP revealed a splice variant in IMPG1. Subsequently, the same variant was identified in individuals from two families with either RP or VMD. A retrospective study of patients with RP or VMD revealed eight additional families with different missense or nonsense variants in IMPG1. In addition, the clinical diagnosis of the IMPG1 retinopathy-associated variant, originally described as benign concentric annular macular dystrophy, was also revised to RP with early macular involvement. Using morpholino-mediated ablation of Impg1 and its paralog Impg2 in medaka fish, we confirmed a phenotype consistent with that observed in the families, including a decreased length of rod and cone photoreceptor outer segments.ConclusionThis study discusses a previously unreported association between monoallelic or biallelic IMPG1 variants and RP. Notably, similar observations have been reported for IMPG2.


2021 ◽  
Vol 22 (4) ◽  
pp. 2190
Author(s):  
Philippa Harding ◽  
Maria Toms ◽  
Elena Schiff ◽  
Nicholas Owen ◽  
Suzannah Bell ◽  
...  

EPHA2 is a transmembrane tyrosine kinase receptor that, when disrupted, causes congenital and age-related cataracts. Cat-Map reports 22 pathogenic EPHA2 variants associated with congenital cataracts, variable microcornea, and lenticonus, but no previous association with microphthalmia (small, underdeveloped eye, ≥2 standard deviations below normal axial length). Microphthalmia arises from ocular maldevelopment with >90 monogenic causes, and can include a complex ocular phenotype. In this paper, we report two pathogenic EPHA2 variants in unrelated families presenting with bilateral microphthalmia and congenital cataracts. Whole genome sequencing through the 100,000 Genomes Project and cataract-related targeted gene panel testing identified autosomal dominant heterozygous mutations segregating with the disease: (i) missense c.1751C>T, p.(Pro584Leu) and (ii) splice site c.2826-9G>A. To functionally validate pathogenicity, morpholino knockdown of epha2a/epha2b in zebrafish resulted in significantly reduced eye size ± cataract formation. Misexpression of N-cadherin and retained fibre cell nuclei were observed in the developing lens of the epha2b knockdown morphant fish by 3 days post-fertilisation, which indicated a putative mechanism for microphthalmia pathogenesis through disruption of cadherin-mediated adherens junctions, preventing lens maturation and the critical signals stimulating eye growth. This study demonstrates a novel association of EPHA2 with microphthalmia, suggesting further analysis of pathogenic variants in unsolved microphthalmia cohorts may increase molecular diagnostic rates.


Sign in / Sign up

Export Citation Format

Share Document