scholarly journals Bi-Functional Radiotheranostics of 188Re-Liposome-Fcy-hEGF for Radio- and Chemo-Therapy of EGFR-Overexpressing Cancer Cells

2021 ◽  
Vol 22 (4) ◽  
pp. 1902 ◽  
Author(s):  
Yi-Shu Huang ◽  
Wei-Chuan Hsu ◽  
Chien-Hong Lin ◽  
Sheng-Nan Lo ◽  
Chu-Nian Cheng ◽  
...  

Epidermal growth factor receptor (EGFR) specific therapeutics is of great importance in cancer treatment. Fcy-hEGF fusion protein, composed of yeast cytosine deaminase (Fcy) and human EGF (hEGF), is capable of binding to EGFR and enzymatically convert 5-fluorocytosine (5-FC) to 1000-fold toxic 5-fluorocuracil (5-FU), thereby inhibiting the growth of EGFR-expressing tumor cells. To develop EGFR-specific therapy, 188Re-liposome-Fcy-hEGF was constructed by insertion of Fcy-hEGF fusion protein onto the surface of liposomes encapsulating of 188Re. Western blotting, MALDI-TOF, column size exclusion and flow cytometry were used to confirm the conjugation and bio-activity of 188Re-liposome-Fcy-hEGF. Cell lines with EGFR expression were subjected to treat with 188Re-liposome-Fcy-hEGF/5-FC in the presence of 5-FC. The 188Re-liposome-Fcy-hEGF/5-FC revealed a better cytotoxic effect for cancer cells than the treatment of liposome-Fcy-hEGF/5-FC or 188Re-liposome-Fcy-hEGF alone. The therapeutics has radio- and chemo-toxicity simultaneously and specifically target to EGFR-expression tumor cells, thereby achieving synergistic anticancer activity.

2020 ◽  
Author(s):  
Lei Wang ◽  
Xusha Zhou ◽  
Weixuan Zou ◽  
Yinglin Wu ◽  
Jing Zhao ◽  
...  

Abstract Background: Exosomes are small, cellular membrane-derived vesicles with a diameter of 50-150 nm. Exosomes are considered ideal drug delivery systems with a wide range of applications in various diseases, including cancer. However, nonspecific delivery of therapeutic agents by exosomes in vivo remains challenging. H uman epidermal growth factor receptor 2 (HER2) is an epidermal growth factor receptor tyrosine kinase, and its overexpression is usually associated with cell survival and tumor progression in various cancers. In this study, we aim to develop novel exosomes with dual HER2-targeting ability as a nanoparticle delivery vehicle to enhance antitumor efficacy in vivo . Results: Here, we report the generation of two kinds of exosomes carrying miRNAs designed to block HER2 synthesis and consequently kill tumor cells. 293-miR-HER2 exosomes package and deliver designed miRNAs to cells to block HER2 synthesis. These exosomes kill cancer cells dependent on HER2 for survival but do not affect cells that lack HER2 or that are engineered to express HER2 but are not dependent on it for survival. In contrast, 293-miR-XS-HER2 exosomes carry an additional peptide, which enables them to adhere to HER2 on the surface of cancer cells. Consequently, these exosomes preferentially enter and kill cells with surface expression of HER2. 293-miR-XS-HER2 exosomes are significantly more effective than the 293-miR-HER2 exosomes in shrinking HER2-positive tumors implanted in mice. Conclusions: Collectively, as novel antitumor drug delivery vehicles, HER2 dual-targeting exosomes exhibit increased target-specific delivery efficiency and can be further utilized to develop new nanoparticle-based targeted therapies.


Breast Cancer ◽  
1997 ◽  
Vol 4 (4) ◽  
pp. 253-255 ◽  
Author(s):  
Masakazu Ueda ◽  
Kyriakos Psarras ◽  
Hiromitsu Jinno ◽  
Tadashi Ikeda ◽  
Kohji Enomoto ◽  
...  

2020 ◽  
Author(s):  
Lei Wang ◽  
Xusha Zhou ◽  
Weixuan Zou ◽  
Yinglin Wu ◽  
Jing Zhao ◽  
...  

Abstract Introduction: Exosomes are small vesicles derived from cellular membranes with a diameter of 50–150 nm. Exosomes are considered to be ideal drug delivery systems with a wide range of application in various diseases including cancer. However, nonspecific delivery of therapeutic agents by exosomes in vivo remains a challenging. Human epidermal growth factor receptor 2 (HER2) is an epidermal growth factor receptor tyrosine kinase. Overexpression of HER2 is usually associated with cancer survival and progression in various cancers. In this study, we aimed to develop the novel exosomes with dual HER2-targeting ability as nanoparticle delivery vehicle to enhance anti-tumor efficacy in vivo.Results Here we report the construction of two kinds of exosomes carrying designed miRNA to block the synthesis of HER2 and as a consequence to kill the tumor cells. The 293-miR-HER2 exosomes package and deliver designed miRNA to cells to block HER2 synthesis. These exosomes kill cancer cells dependent on HER2 for survival but have no effect on cells lacking of HER2 or which were engineered to express HER2 but do not depend on it for survival. The 293-miR-XS-HER2 exosomes carry one more peptide, which enables the exosome to adhere HER2 on the surface of the cancer cells. In consequence these exosomes preferentially enter and kill cells exhibiting HER2 on their surface. The 293-miR-XS-HER2 exosomes are significantly more effective in shrinking the size of HER2-positive tumors implanted in mice than the 293-miR-HER2 exosomes.Conclusion Collectively, as novel anti-tumor drug delivery vehicles, the HER2 dual-targeting exosomes has increased target-specific delivery efficiency, which can be further utilized to develop new nanoparticle targeted therapy.


2018 ◽  
Vol 129 (3) ◽  
pp. 805-814 ◽  
Author(s):  
Eric D. Young ◽  
Davis Ingram ◽  
William Metcalf-Doetsch ◽  
Dilshad Khan ◽  
Ghadah Al Sannaa ◽  
...  

OBJECTIVEWhile sporadic peripheral schwannomas (SPSs) are generally well treated with surgery, their biology is not well understood. Consequently, treatment options are limited. The aim of this study was to provide a comprehensive description of SPS. The authors describe clinicopathological features and treatment outcomes of patients harboring these tumors, and they assess expression of biomarkers using a clinically annotated tissue microarray. Together, these data give new insight into the biology and management of SPS.METHODSPatients presenting with a primary SPS between 1993 and 2011 (n = 291) were selected from an institutional registry to construct a clinical database. All patients underwent follow-up, and short- and long-term outcomes were assessed. Expression of relevant biomarkers was assessed using a new tissue microarray (n = 121).RESULTSSPSs were generally large (mean 5.5 cm) and frequently painful at presentation (55%). Most patients were treated with surgery (80%), the majority of whom experienced complete resolution (52%) or improvement (18%) of their symptoms. Tumors that were completely resected (85%) did not recur. Some patients experienced short-term (16%) and long-term (4%) complications postoperatively. Schwannomas expressed higher levels of platelet-derived growth factor receptor–β (2.1) than malignant peripheral nerve sheath tumors (MPNSTs) (1.5, p = 0.004) and neurofibromas (1.33, p = 0.007). Expression of human epidermal growth factor receptor–2 was greater in SPSs (0.91) than in MPNSTs (0.33, p = 0.002) and neurofibromas (0.33, p = 0.026). Epidermal growth factor receptor was expressed in far fewer SPS cells (10%) than in MPNSTs (58%, p < 0.0001) or neurofibromas (37%, p = 0.007). SPSs more frequently expressed cytoplasmic survivin (66% of tumor cells) than normal nerve (46% of cells), but SPS expressed nuclear survivin in fewer tumor cells than in MPNSTs (24% and 50%, respectively; p = 0.018).CONCLUSIONSComplete resection is curative for SPS. Left untreated, however, these tumors can cause significant morbidity, and not all patients are candidates for resection. SPSs express a pattern of biomarkers consistent with the dysregulation of the tumor suppressor merlin observed in neurofibromatosis Type 2–associated schwannomas, suggesting a shared etiology. This SPS pattern is distinct from that of other tumors of the peripheral nerve sheath.


Sign in / Sign up

Export Citation Format

Share Document