scholarly journals Novel Cell Permeable Polymers of N-Substituted L-2,3-Diaminopropionic Acid (DAPEGs) and Cellular Consequences of Their Interactions with Nucleic Acids

2021 ◽  
Vol 22 (5) ◽  
pp. 2571
Author(s):  
Anita Romanowska ◽  
Katarzyna Węgrzyn ◽  
Katarzyna Bury ◽  
Emilia Sikorska ◽  
Aleksandra Gnatek ◽  
...  

The present study aimed to synthesize novel polycationic polymers composed of N-substituted L-2,3-diaminopropionic acid residues (DAPEGs) and investigate their cell permeability, cytotoxicity, and DNA-binding ability. The most efficient cell membrane-penetrating compounds (O2Oc-Dap(GO2)n-O2Oc-NH2, where n = 4, 6, and 8) showed dsDNA binding with a binding constant in the micromolar range (0.3, 3.4, and 0.19 µM, respectively) and were not cytotoxic to HB2 and MDA-MB-231 cells. Selected compounds used in the transfection of a GFP plasmid showed high transfection efficacy and minimal cytotoxicity. Their interaction with plasmid DNA and the increasing length of the main chain of tested compounds strongly influenced the organization and shape of the flower-like nanostructures formed, which were unique for 5/6-FAM-O2Oc-[Dap(GO2)]8-O2Oc-NH2 and typical for large proteins.

1966 ◽  
Vol 137 (2 Biological Me) ◽  
pp. 837-859 ◽  
Author(s):  
Gilbert N. Ling

2017 ◽  
Vol 77 (2) ◽  
pp. 296-303 ◽  
Author(s):  
Zhijun Ren ◽  
Xiaodong Leng ◽  
Qian Liu

Abstract To better understand the microbial oil removal enhancement process by a magnetic field, the effect of a static magnetic field (SMF) on the microscopic characteristics of highly efficient biodegradation oil-removing bacteria was studied. The Acinetobacter sp. B11 strain with a 53.6% oil removal rate was selected as the reference bacteria. The changes in the microscopic characteristics of Acinetobacter sp. B11 such as the cell surface morphology, cell permeability and cell activity of the bacteria were investigated. The results showed that low-intensity magnetic fields (15–35 mT) improved the ability of Acinetobacter sp. B11 to remove oil by 11.9% at 25 mT compared with that of bacteria with no magnetic field. Without destroying the cell membrane, the low-intensity magnetic fields increased the cell membrane permeability and improved the activity of superoxide dismutase (SOD), which effectively enhanced the oil degradation performance of the bacteria.


1980 ◽  
Vol 60 (2) ◽  
pp. 613-620 ◽  
Author(s):  
JACINTA CROWLEY ◽  
G. N. PRENDEVILLE

Leakage of electrolytes from leaf discs of treated Phaseolus vulgaris L. plants was used to study the effects of several herbicides of different modes of action on leaf-cell membrane permeability. Linuron (N-(3,4-dichlorophenyl)-N-methoxy-N-methylurea), prometryne (4,6-bisisopropylamino-2-methylthio-1,3,5-triazine), bromacil (5,bromo-6-methyl-3-(1-methyl-n-propyl) uracil), sodium azide and dalapon (2,2-dichloropropionic acid) increased leaf-cell permeability at 24 h after treatment and this occurred without appearance of leaf necrosis. Glyphosate (N-(phosphonomethyl) glycine) increased leaf-cell permeability at 96 h and this was always associated with visible injury, including wilting. Paraquat (1,1-dimethyl-4,4-bipyridylium) at 10−5M increased leaf-cell permeability 48 h after treatment, without apparent leaf damage, but at higher concentrations, increased permeability was always associated with visible effects. Chlorpropham (isopropyl N-(d)3-chlorophenyl) carbamate), picloram (4-amino-3,5,6-trichloropicolinic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) did not alter cell permeability even though epinastic symptoms in leaves became evident 24 h after treatment with picloram and 2,4-D.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Joshua Woo ◽  
Jeoung Soo Lee

Aim: We investigated the effect of lyoprotectants on the long-term stability and transfection efficiency of lyophilized (Lyo.) polyplexes prepared from poly(lactide-co-glycolide)-graft-polyethylenimine (PgP) and plasmid DNA encoding green fluorescent protein (pGFP). Materials & methods: Lyo. PgP/pGFP polyplexes prepared with/without lyoprotectants were stored at -20°C over 6 months. Polyplex stability was analyzed by gel electrophoresis and heparin competition assay. Transfection efficiency and cytotoxicity were evaluated in rat glioma (C6) cells in medium containing 10% serum. Results: Lyo. PgP/pGFP polyplexes prepared with 5% sucrose as a lyoprotectant remained stable up to 6 months and retained transfection efficiency up to 4 months. Conclusion: Lyo. PgP-based polyplexes retain bioactivity during extended storage, potentially enabling transport to remote regions and less stable settings, increasing access to life-changing gene therapy.


2015 ◽  
Vol 108 (2) ◽  
pp. 414a
Author(s):  
Barnabás Böcskei-Antal ◽  
Bianka Nagy ◽  
Szilvia Anikó Tóth ◽  
Nikoletta Kósa ◽  
István Voszka ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257431
Author(s):  
Sirirak Arthithanyaroj ◽  
Surang Chankhamhaengdecha ◽  
Urai Chaisri ◽  
Ratchaneewan Aunpad ◽  
Amornrat Aroonnual

Clostridioides difficile infection is the most common cause of nosocomial and antibiotic-associated diarrhea. C. difficile treatment is increasingly likely to fail, and the recurrence rate is high. Antimicrobial peptides are considered an alternative treatment for many infectious diseases, including those caused by antibiotic resistant bacteria. In the present study, we identified a CM peptide, a hybrid of cecropin A and melittin, and its derivative which possesses potent antimicrobial activity against C. difficile strain 630. CM peptide exhibited antibacterial activity with minimum inhibitory concentration of 3.906 μg/ml (2.21 μM). A modified derivative of CM, CM-A, exhibited even greater activity with a minimum inhibitory concentration of 1.953 μg/ml (1.06 μM) and a minimum bactericidal concentration of 7.8125 μg/ml (4.24 μM), which indicates that CM-A peptide is more efficient than its parent peptide. A fluorescence-activated cell sorter analysis revealed that the membrane of C. difficile 630 could be an important target for CM-A. This peptide induced high levels of cell depolarization and cell permeability on C. difficile cell membrane. Moreover, electron microscopy imaging showed that CM-A interferes with the C. difficile cell membrane. Hence, the antimicrobial peptide CM-A may represent a promising novel approach for the treatment of C. difficile infections.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi180-vi180
Author(s):  
Tali Voloshin ◽  
Bella Koltun ◽  
Lilach Koren ◽  
Yaara Porat ◽  
Alexandra Volodin ◽  
...  

Abstract INTRODUCTION Tumor Treating Fields (TTFields) are intermediate frequency, alternating electric fields with anti-mitotic effects on cancerous cells. TTFields are delivered non-invasively through arrays placed on the skin at the tumor region. TTFields therapy is approved in several territories for treatment of glioblastoma (GBM) and mesothelioma. Recently, TTFields have been shown to increase GBM cell membrane permeability. The current study aimed to explore this effect in multiple cell lines and examine the potential benefits of combining TTFields with other anticancer agents. METHODS TTFields were delivered to GBM (U-87 MG), uterine sarcoma (MES-SA), and breast adenocarcinoma (MCF-7) cell lines for 72hr across a range of frequencies (50-500kHz). Cytotoxicity of TTFields was examined by cell counts, and intracellular accumulation of 7-aminoactinomycin D (7-AAD) was measured by flow cytometry. Exposing the cells to 7-AAD at different time points relative to TTFields application cessation was used to determine the kinetics of cell membrane permeability. The potential of TTFields to facilitate intracellular accumulation of anthracycline chemotherapeutics was tested in chemotherapy-sensitive and chemotherapy-resistant cells. RESULTS Elevated intracellular accumulation of 7-AAD was observed in all examined cell lines treated with TTFields, at an optimal frequency that differed from that for maximal TTFields-induced cytotoxicity. No intracellular accumulation of 7-AAD was seen for measurements performed after termination of TTFields application, indicating that increased cell membrane permeability by TTFields was temporary and reversible. Lastly, the accumulation of chemotherapeutic agents in chemotherapy-resistant cancer cells was elevated to the same extent as in matched chemotherapy-sensitive cells when TTFields were delivered concomitant with chemotherapy. CONCLUSIONS TTFields increased cancer cell permeability in a transient and reversible manner across multiple cancer cell types. The increased permeability enhanced intracellular accumulation of chemotherapeutics, even within chemotherapy-resistant cells.


2019 ◽  
Vol 7 (39) ◽  
pp. 5920-5929 ◽  
Author(s):  
Ilja Tabujew ◽  
Ceren Cokca ◽  
Leon Zartner ◽  
Ulrich S. Schubert ◽  
Ivo Nischang ◽  
...  

Herein, we report the first gradient guanidinium containing cationic copolymers and investigate their binding ability to plasmid DNA (pDNA).


Physiology ◽  
1997 ◽  
Vol 12 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Arnost Kleinzeller

In a series of three lectures in 1895-1899, Charles Ernest Overton (1865-1933) pioneered three fundamental concepts of the structure and function of cell membranes: 1) the lipid theory of cell permeability, 2) the lipid theory of narcosis, and 3) the involvement of an Na+/K+ exchange in muscle and nerve excitability.


Sign in / Sign up

Export Citation Format

Share Document