scholarly journals Free Radicals and ROS Induce Protein Denaturation by UV Photostability Assay

2021 ◽  
Vol 22 (12) ◽  
pp. 6512
Author(s):  
Paolo Ruzza ◽  
Claudia Honisch ◽  
Rohanah Hussain ◽  
Giuliano Siligardi

Oxidative stress, photo-oxidation, and photosensitizers are activated by UV irradiation and are affecting the photo-stability of proteins. Understanding the mechanisms that govern protein photo-stability is essential for its control enabling enhancement or reduction. Currently, two major mechanisms for protein denaturation induced by UV irradiation are available: one generated by the local heating of water molecules bound to the proteins and the other by the formation of reactive free radicals. To discriminate which is the likely or dominant mechanism we have studied the effects of thermal and UV denaturation of aqueous protein solutions with and without DHR-123 as fluorogenic probe using circular dichroism (CD), synchrotron radiation circular dichroism (SRCD), and fluorescence spectroscopies. The results indicated that the mechanism of protein denaturation induced by VUV and far-UV irradiation were mediated by the formation of reactive free radicals (FR) and reactive oxygen species (ROS). The development at Diamond B23 beamline for SRCD of a novel protein UV photo-stability assay based on consecutive repeated CD measurements in the far-UV (180–250 nm) region has been successfully used to assess and characterize the photo-stability of protein formulations and ligand binding interactions, in particular for ligand molecules devoid of significant UV absorption.

2019 ◽  
Vol 26 (7) ◽  
pp. 532-541 ◽  
Author(s):  
Cadena-Cadena Francisco ◽  
Cárdenas-López José Luis ◽  
Ezquerra-Brauer Josafat Marina ◽  
Cinco-Moroyoqui Francisco Javier ◽  
López-Zavala Alonso Alexis ◽  
...  

Background: Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. Objective: In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. Methods: Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. Results: It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. Conclusion: In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.


2008 ◽  
Vol 15 (4) ◽  
pp. 420-422 ◽  
Author(s):  
A. J. Miles ◽  
Robert W. Janes ◽  
A. Brown ◽  
D. T. Clarke ◽  
J. C. Sutherland ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 396 ◽  
Author(s):  
Kim ◽  
Oh

Clay minerals are widely utilized in pharmaceutical and dermatological sciences as a gastrointestinal medicine or skin remediation agent. In order to verify the feasibility of clays as an injection, pill, or topical agent, it is important to study their interactions with biological components, such as proteins. In this study, we utilized a protein fluorescence quenching assay and circular dichroism spectroscopy to evaluate general aspects of protein denaturation and conformational change, respectively. Three different clays; layered double oxide (LDO), montmorilonite (MMT) and halloysite nanotube (HNT), were treated with albumin and the physico-chemical effect on the protein’s conformation was investigated. MMT was shown to influence the conformational change the most, owing to the large accessible adsorption site. HNT showed meaningful circular dichroism (CD) band collapse as well as fluorescence quenching in the protein, suggesting a potential harmful effect of HNT toward the protein. Among the three tested clays, LDO was determined to affect protein structure the least in terms of three-dimensional conformation and helical structure.


2021 ◽  
Vol 309 ◽  
pp. 01229
Author(s):  
Sangeeta ◽  
Anu Radha Pathania

The higher-order structure of proteins as well as their thermal stability can be determined using the circular dichroism (CD). CD is a common approach for swiftly assessing binding, secondary structure, and folding properties of proteins. In a nutshell, circular dichroism is an absorption spectroscopy technique that employs circularly polarized light to explore structural properties of optically active chiral compounds. Biological molecules, as well as their interactions with metals and other compounds, are studied extensively. Circular dichroism is becoming more widely acknowledged as a useful technique for studying the various conformations taken by proteins and nucleic acids in solution. Because CD is a quantitative approach, it can be used to track protein denaturation and protein-ligand interaction. These CD measures will have two key advantages: they can be performed on small amounts of material in a physiological buffer, and they will provide one of the greatest methods for monitoring any structural changes that occur as a result of changes in environmental conditions. It has proven possible to generate proteins on a big scale for therapeutic reasons utilizing recombinant DNA technology. Circular dichroism is also well-known as a useful method which is used for determining the folding characteristics of proteins. CD is used to see if a purified, produced peptide is either bended or if it has a mutation that impacts its strength and confirmation. The basic steps in getting this CD data, as well as the methodologies for interpreting the spectra in order to predict the protein structure, are summarized in this article. However, many researchers’ value is harmed when they use circular dichroism, either because of poor experimental design or because of insufficient data. The essential steps in getting this CD data, as well as the methodologies for interpreting the spectra in order to predict the protein structure, will be summarized in this article. However, the value of many investigations using circular dichroism is harmed due to insufficient attention to critical components of instrument calibration or sample characterization.


Sign in / Sign up

Export Citation Format

Share Document