scholarly journals Tumor Cell-Specific 2′-Fluoro RNA Aptamer Conjugated with Closo-Dodecaborate as A Potential Agent for Boron Neutron Capture Therapy

2021 ◽  
Vol 22 (14) ◽  
pp. 7326
Author(s):  
Mariya A. Vorobyeva ◽  
Maya A. Dymova ◽  
Darya S. Novopashina ◽  
Elena V. Kuligina ◽  
Valentina V. Timoshenko ◽  
...  

Boron neutron capture therapy (BNCT) is a binary radiotherapeutic approach to the treatment of malignant tumors, especially glioblastoma, the most frequent and incurable brain tumor. For successful BNCT, a boron-containing therapeutic agent should provide selective and effective accumulation of 10B isotope inside target cells, which are then destroyed after neutron irradiation. Nucleic acid aptamers look like very prospective candidates for carrying 10B to the tumor cells. This study represents the first example of using 2′-F-RNA aptamer GL44 specific to the human glioblastoma U-87 MG cells as a boron delivery agent for BNCT. The closo-dodecaborate residue was attached to the 5′-end of the aptamer, which was also labeled by the fluorophore at the 3′-end. The resulting bifunctional conjugate showed effective and specific internalization into U-87 MG cells and low toxicity. After incubation with the conjugate, the cells were irradiated by epithermal neutrons on the Budker Institute of Nuclear Physics neutron source. Evaluation of the cell proliferation by real-time cell monitoring and the clonogenic test revealed that boron-loaded aptamer decreased specifically the viability of U-87 MG cells to the extent comparable to that of 10B-boronophenylalanine taken as a control. Therefore, we have demonstrated a proof of principle of employing aptamers for targeted delivery of boron-10 isotope in BNCT. Considering their specificity, ease of synthesis, and large toolkit of chemical approaches for high boron-loading, aptamers provide a promising basis for engineering novel BNCT agents.

2021 ◽  
Vol 20 (3) ◽  
pp. 56-66
Author(s):  
V. V. Kanygin ◽  
A. I. Kasatova ◽  
I. A. Razumov ◽  
E. L. Zavyalov ◽  
A. I. Kichigin ◽  
...  

Introduction. Boron neutron capture therapy (bnct) is a promising method for treating tumors, in particular, infiltrative malignant tumors, due to the selective destruction of tumor cells without damaging the surrounding normal tissues. This type of therapy is based on nuclear reaction of neutron capture by stable 10b isotope. For the successful implementation of bnct, boron delivery drugs that must be selectively accumulated in malignant cells in a sufficient amount, and a neutron source with the energy required for the neutron capture reaction are needed. At the budker institute of nuclear physics, the accelerator-based neutron source was designed with flux parameters allowing studies on bnct to be conducted.Objective: to assess the effect of bnct on tumor and normal cell lines using borphenylalanine (bpa), borcaptate (bsh) and liposomal borcaptat as boron delivery drugs.Materials and methods. Human cell cultures: glioblastoma (u87), colorectal human adenocarcinoma (sw-620), human melanoma (sk-mel28) and primary embryonic cell lines were irradiated with a neutron flux at the presence of bpa, bsh and liposomal bsh with a concentration of 10b 40 μg/ml. The short-term cytotoxic effect of irradiation was evaluated using trypan blue. Cell survival 96 hours after irradiation was determined using mtt test, and survival fraction was evaluated using the clonogenic test.Results. Early cytotoxic effects of irradiation were not observed for all 4 cell lines. According to mtt and clonogenic tests, the most pronounced effect of bnct was noticed for sw-620 and u87 lines, regardless of boron delivery drug used. For sk-mel28 line, the best effect was achieved after irradiation with liposomal borocaptate. For the primary transplanted embryonic line, high toxicity was revealed when bnct was performed with borphenylalanine and borcaptate.Conclusion. The data obtained indicate that the accelerator-based bnct using boron delivery drugs, such as borphenylalanine, borcaptate and liposomal borcaptat, has a positive effect on tumor lines of glioblastoma, colorectal adenocarcinoma and melanoma.


2007 ◽  
Vol 37 (4) ◽  
pp. 245-249 ◽  
Author(s):  
Minoru Suzuki ◽  
Yoshinori Sakurai ◽  
Shinichiro Masunaga ◽  
Yuko Kinashi ◽  
Kenji Nagata ◽  
...  

Neurosurgery ◽  
2007 ◽  
Vol 61 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Shin-Ichi Miyatake ◽  
Yoji Tamura ◽  
Shinji Kawabata ◽  
Kyoko Iida ◽  
Toshihiko Kuroiwa ◽  
...  

Abstract OBJECTIVE Malignant meningiomas, similar to glioblastomas, are difficult tumors to control. We tried to control malignant tumors related to meningiomas by boron neutron capture therapy (BNCT). METHODS Since June 2005, we applied BNCT with 13 rounds of neutron irradiation to seven cases of malignant tumors related to meningiomas. Three were anaplastic meningiomas, two were papillary meningiomas, one was an atypical meningioma, and one was a sarcoma transformed from a meningioma with cervical lymph node metastasis. All patients had previously undergone repetitive surgeries and radiotherapy. Follow-up images were available for six patients with an observation period between 7 and 13 months. We applied 18F-boronophenylalanine (BPA)-positron emission tomography (PET) before BNCT in six of the seven patients. One patient underwent methionine-PET instead of 18F-BPA-PET. RESULTS Five of the six patients who underwent BPA-PET analysis showed good BPA uptake, with a greater than 2.7 tumor-to-healthy brain ratio. The atypical meningioma case showed a tumor-to-healthy brain ratio of 2.0. The original tumor sizes were between 13.6 and 109 ml. Two of the three anaplastic meningiomas showed a complete response, and all six patients available for follow-up imaging showed radiographic improvements. Clinical symptoms before BNCT, such as hemiparesis and facial pain, were improved after BNCT in all but one patient. In this patient, a huge atypical meningioma arose from the falcotentorial junction and extended to the bilateral occipital lobes and brainstem; visual problems worsened after repetitive BNCT, with an increase in peritumoral edema. CONCLUSION Malignant meningiomas seem to be good candidates for BNCT.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1490
Author(s):  
Alexander Zaboronok ◽  
Sergey Taskaev ◽  
Olga Volkova ◽  
Ludmila Mechetina ◽  
Anna Kasatova ◽  
...  

Boron neutron capture therapy (BNCT) is an anticancer modality realized through 10B accumulation in tumor cells, neutron irradiation of the tumor, and decay of boron atoms with the release of alpha-particles and lithium nuclei that damage tumor cell DNA. As high-LET particle release takes place inside tumor cells absorbed dose calculations are difficult, since no essential extracellular energy is emitted. We placed gold nanoparticles inside tumor cells saturated with boron to more accurately measure the absorbed dose. T98G cells accumulated ~50 nm gold nanoparticles (AuNPs, 50 µg gold/mL) and boron-phenylalanine (BPA, 10, 20, 40 µg boron-10/mL), and were irradiated with a neutron flux of 3 × 108 cm−2s−1. Gamma-rays (411 keV) emitted by AuNPs in the cells were measured by a spectrometer and the absorbed dose was calculated using the formula D = (k × N × n)/m, where D was the absorbed dose (GyE), k—depth-related irradiation coefficient, N—number of activated gold atoms, n—boron concentration (ppm), and m—the mass of gold (g). Cell survival curves were fit to the linear-quadratic (LQ) model. We found no influence from the presence of the AuNPs on BNCT efficiency. Our approach will lead to further development of combined boron and high-Z element-containing compounds, and to further adaptation of isotope scanning for BNCT dosimetry.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 370
Author(s):  
Silva Bortolussi ◽  
Yuan-Hao Liu ◽  
Ignacio Porras

Boron Neutron Capture Therapy (BNCT) is a binary radiation treatment exploiting a nuclear reaction occurring in tumor cells [...]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabian Heide ◽  
Matthew McDougall ◽  
Candice Harder-Viddal ◽  
Roy Roshko ◽  
David Davidson ◽  
...  

AbstractBoron neutron capture therapy (BNCT) is a two-step therapeutic process that utilizes Boron-10 in combination with low energy neutrons to effectively eliminate targeted cells. This therapy is primarily used for difficult to treat head and neck carcinomas; recent advances have expanded this method to cover a broader range of carcinomas. However, it still remains an unconventional therapy where one of the barriers for widespread adoption is the adequate delivery of Boron-10 to target cells. In an effort to address this issue, we examined a unique nanoparticle drug delivery system based on a highly stable and modular proteinaceous nanotube. Initially, we confirmed and structurally analyzed ortho-carborane binding into the cavities of the nanotube. The high ratio of Boron to proteinaceous mass and excellent thermal stability suggest the nanotube system as a suitable candidate for drug delivery into cancer cells. The full physicochemical characterization of the nanotube then allowed for further mechanistic molecular dynamic studies of the ortho-carborane uptake and calculations of corresponding energy profiles. Visualization of the binding event highlighted the protein dynamics and the importance of the interhelical channel formation to allow movement of the boron cluster into the nanotube. Additionally, cell assays showed that the nanotube can penetrate outer membranes of cancer cells followed by localization around the cells’ nuclei. This work uses an integrative approach combining experimental data from structural, molecular dynamics simulations and biological experiments to thoroughly present an alternative drug delivery device for BNCT which offers additional benefits over current delivery methods.


Sign in / Sign up

Export Citation Format

Share Document