scholarly journals Role of Extracellular Vimentin in Cancer-Cell Functionality and Its Influence on Cell Monolayer Permeability Changes Induced by SARS-CoV-2 Receptor Binding Domain

2021 ◽  
Vol 22 (14) ◽  
pp. 7469
Author(s):  
Divyendu Goud Thalla ◽  
Philipp Jung ◽  
Markus Bischoff ◽  
Franziska Lautenschläger

The cytoskeletal protein vimentin is secreted under various physiological conditions. Extracellular vimentin exists primarily in two forms: attached to the outer cell surface and secreted into the extracellular space. While surface vimentin is involved in processes such as viral infections and cancer progression, secreted vimentin modulates inflammation through reduction of neutrophil infiltration, promotes bacterial elimination in activated macrophages, and supports axonal growth in astrocytes through activation of the IGF-1 receptor. This receptor is overexpressed in cancer cells, and its activation pathway has significant roles in general cellular functions. In this study, we investigated the functional role of extracellular vimentin in non-tumorigenic (MCF-10a) and cancer (MCF-7) cells through the evaluation of its effects on cell migration, proliferation, adhesion, and monolayer permeability. Upon treatment with extracellular recombinant vimentin, MCF-7 cells showed increased migration, proliferation, and adhesion, compared to MCF-10a cells. Further, MCF-7 monolayers showed reduced permeability, compared to MCF-10a monolayers. It has been shown that the receptor binding domain of SARS-CoV-2 spike protein can alter blood–brain barrier integrity. Surface vimentin also acts as a co-receptor between the SARS-CoV-2 spike protein and the cell-surface angiotensin-converting enzyme 2 receptor. Therefore, we also investigated the permeability of MCF-10a and MCF-7 monolayers upon treatment with extracellular recombinant vimentin, and its modulation of the SARS-CoV-2 receptor binding domain. These findings show that binding of extracellular recombinant vimentin to the cell surface enhances the permeability of both MCF-10a and MCF-7 monolayers. However, with SARS-CoV-2 receptor binding domain addition, this effect is lost with MCF-7 monolayers, as the extracellular vimentin binds directly to the viral domain. This defines an influence of extracellular vimentin in SARS-CoV-2 infections.

2021 ◽  
Author(s):  
Yen-Pang Hsu ◽  
Debopreeti Mukherjee ◽  
Vladimir Shchurik ◽  
Alexey Makarov ◽  
Benjamin F. Mann

AbstractGlycans of the SARS-CoV-2 spike protein are speculated to play functional roles in the infection processes as they extensively cover the protein surface and are highly conserved across the variants. To date, the spike protein has become the principal target for vaccine and therapeutic development while the exact effects of its glycosylation remain elusive. Experimental reports have described the heterogeneity of the spike protein glycosylation profile. Subsequent molecular simulation studies provided a knowledge basis of the glycan functions. However, there are no studies to date on the role of discrete glycoforms on the spike protein pathobiology. Building an understanding of its role in SARS-CoV-2 is important as we continue to develop effective medicines and vaccines to combat the disease. Herein, we used designed combinations of glycoengineering enzymes to simplify and control the glycosylation profile of the spike protein receptor-binding domain (RBD). Measurements of the receptor binding affinity revealed the regulatory effects of the RBD glycans. Remarkably, opposite effects were observed from differently remodeled glycans, which presents a potential strategy for modulating the spike protein behaviors through glycoengineering. Moreover, we found that the reported anti-SARS-CoV-(2) antibody, S309, neutralizes the impact of different RBD glycoforms on the receptor binding affinity. Overall, this work reports the regulatory roles that glycosylation plays in the interaction between the viral spike protein and host receptor, providing new insights into the nature of SARS-CoV-2. Beyond this study, enzymatic remodeling of glycosylation offers the opportunity to understand the fundamental role of specific glycoforms on glycoconjugates across molecular biology.Covert art LegendsThe glycosylation of the SARS-CoV-2 spike protein receptor-binding domain has regulatory effects on the receptor binding affinity. Sialylation or not determines the “stabilizing” or “destabilizing” effect of the glycans. (Protein structure model is adapted from Protein Data Bank: 6moj. The original model does not contain the glycan structure.)SignificanceGlycans extensively cover the surface of SARS-CoV-2 spike (S) protein but the relationships between the glycan structures and the protein pathological behaviors remain elusive. Herein, we simplified and harmonized the glycan structures in the S protein receptor-binding domain and reported their regulatory roles in human receptor interaction. Opposite regulatory effects were observed and were determined by discrete glycan structures, which can be neutralized by the reported S309 antibody binding to the S protein. This report provides new insight into the mechanism of SARS-CoV-2 S protein infection as well as S309 neutralization.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 146
Author(s):  
Lee Makowski ◽  
William Olson-Sidford ◽  
John W. Weisel

Although ACE2 (angiotensin converting enzyme 2) is considered the primary receptor for CoV-2 cell entry, recent reports suggest that alternative pathways may contribute. This paper considers the hypothesis that viral binding to cell-surface integrins may contribute to the high infectivity and widespread extra-pulmonary impacts of the SARS-CoV-2 virus. This potential is suggested on the basis of the emergence of an RGD (arginine-glycine-aspartate) sequence in the receptor-binding domain of the spike protein. RGD is a motif commonly used by viruses to bind cell-surface integrins. Numerous signaling pathways are mediated by integrins and virion binding could lead to dysregulation of these pathways, with consequent tissue damage. Integrins on the surfaces of pneumocytes, endothelial cells and platelets may be vulnerable to CoV-2 virion binding. For instance, binding of intact virions to integrins on alveolar cells could enhance viral entry. Binding of virions to integrins on endothelial cells could activate angiogenic cell signaling pathways; dysregulate integrin-mediated signaling pathways controlling developmental processes; and precipitate endothelial activation to initiate blood clotting. Such a procoagulant state, perhaps together with enhancement of platelet aggregation through virions binding to integrins on platelets, could amplify the production of microthrombi that pose the threat of pulmonary thrombosis and embolism, strokes and other thrombotic consequences. The susceptibility of different tissues to virion–integrin interactions may be modulated by a host of factors, including the conformation of relevant integrins and the impact of the tissue microenvironment on spike protein conformation. Patient-specific differences in these factors may contribute to the high variability of clinical presentation. There is danger that the emergence of receptor-binding domain mutations that increase infectivity may also enhance access of the RGD motif for integrin binding, resulting in viral strains with ACE2 independent routes of cell entry and novel integrin-mediated biological and clinical impacts. The highly infectious variant, B.1.1.7 (or VUI 202012/01), includes a receptor-binding domain amino acid replacement, N501Y, that could potentially provide the RGD motif with enhanced access to cell-surface integrins, with consequent clinical impacts.


2020 ◽  
Author(s):  
Miao-Hsi Hsieh ◽  
Nazar beirag ◽  
Valarmathy Murugaiah ◽  
Yu-Chi Chou ◽  
Wen-Shuo Kuo ◽  
...  

AbstractHuman SP-D is a potent innate immune molecule whose presence at pulmonary mucosal surfaces allows immune surveillance role against pulmonary pathogens. Higher levels of serum SP-D have been reported in patients with severe acute respiratory syndrome coronavirus-1 (SARS-CoV). Studies have suggested the ability of human SP-D to recognise spike glycoprotein of SARS-CoV; its interaction with HCoV-229E strain leads to viral inhibition in human bronchial epithelial (16HBE) cells. Previous studies have reported that a recombinant fragment of human SP-D (rfhSP-D) composed of 8 Gly-X-Y repeats, neck and CRD region, can act against a range of viral pathogens including influenza A Virus and Respiratory Syncytial Virus in vitro, in vivo and ex vivo models. In this context, this study was aimed at examining the likely protective role of rfhSP-D against SARS-CoV-2 infection. rfhSP-D showed a dose-responsive binding to S1 spike protein of SARS-CoV-2 and its receptor binding domain. Importantly, rfhSP-D inhibited interaction of S1 protein with the HEK293T cells overexpressing Angiotensin Converting Enzyme 2. The protective role of rfhSP-D against SARS-CoV-2 infection as an entry inhibitor was further validated by the use of pseudotyped lentiviral particles expressing SARS-CoV-2 S1 protein; ~0.5 RLU fold reduction in viral entry was seen following rfhSP-D treatment (10 μg/ml). The results highlight the therapeutic potential of rfhSP-D in SARS-CoV-2 infection and merits pre-clinical studies in murine models.


2020 ◽  
Vol 286 ◽  
pp. 198058 ◽  
Author(s):  
Nouredine Behloul ◽  
Sarra Baha ◽  
Ruihua Shi ◽  
Jihong Meng

Author(s):  
Bipin Singh

: The recent outbreak of novel coronavirus (SARS-CoV-2 or 2019-nCoV) and its worldwide spread is posing one of the major threats to human health and the world economy. It has been suggested that SARS-CoV-2 is similar to SARSCoV based on the comparison of the genome sequence. Despite the genomic similarity between SARS-CoV-2 and SARSCoV, the spike glycoprotein and receptor binding domain in SARS-CoV-2 shows the considerable difference compared to SARS-CoV, due to the presence of several point mutations. The analysis of receptor binding domain (RBD) from recently published 3D structures of spike glycoprotein of SARS-CoV-2 (Yan, R., et al. (2020); Wrapp, D., et al. (2020); Walls, A. C., et al. (2020)) highlights the contribution of a few key point mutations in RBD of spike glycoprotein and molecular basis of its efficient binding with human angiotensin-converting enzyme 2 (ACE2).


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


Sign in / Sign up

Export Citation Format

Share Document