immune molecule
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 2)

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 65
Author(s):  
Marion Delphin ◽  
Suzanne Faure-Dupuy ◽  
Nathalie Isorce ◽  
Michel Rivoire ◽  
Anna Salvetti ◽  
...  

Co-infection with the hepatitis B virus and hepatitis delta virus (HDV) leads to the most aggressive form of viral hepatitis. Using in vitro infection models, we confirmed that IL-1β, a crucial innate immune molecule for pathogen control, was very potent against HBV from different genotypes. Additionally, we demonstrated for the first time a strong and rapid antiviral effect induced by very low doses of IL-1β against HDV. In parallel, using co-culture assays, we demonstrated that monocytes exposed to HBV, and in particular to HBsAg, during differentiation into pro-inflammatory macrophages secreted less IL-1β. Altogether, our data emphasize the importance of developing combined antiviral strategies that would, for instance, reduce the secretion of HBsAg and stimulate the immune system to produce endogenous IL-1β efficient against both HBV and HDV.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1252
Author(s):  
Beibei Qin ◽  
Tiaoyi Xiao ◽  
Chunhua Ding ◽  
Yadong Deng ◽  
Zhao Lv ◽  
...  

Tripartite motif proteins (TRIMs), especially B30.2 domain-containing TRIMs (TRIMs-B30.2), are increasingly well known for their antiviral immune functions in mammals, while antiviral TRIMs are far from being identified in teleosts. In the present study, we identified a total of 42 CiTRIMs from the genome of grass carp, Ctenopharyngodon idella, an important cultured teleost in China, based on hmmsearch and SMART analysis. Among these CiTRIMs, the gene loci of 37 CiTRIMs were located on different chromosomes and shared gene collinearities with homologous counterparts from human and zebrafish genomes. They possessed intact conserved RBCC or RB domain assemblies at their N-termini and eight different domains, including the B30.2 domain, at their C-termini. A total of 19 TRIMs-B30.2 were identified, and most of them were clustered into a large branch of CiTRIMs in the dendrogram. Tissue expression analysis showed that 42 CiTRIMs were universally expressed in various grass carp tissues. A total of 11 significantly differentially expressed CiTRIMs were found in two sets of grass carp transcriptomes during grass carp reovirus (GCRV) infection. Three of them, including Cibtr40, CiTRIM103 and CiTRIM109, which all belonged to TRIMs-B30.2, were associated with the type I interferon response during GCRV infection by weighted network co-expression and gene expression trend analyses, suggesting their involvement in antiviral immunity. These findings may offer useful information for understanding the structure, evolution, and function of TRIMs in teleosts and provide potential antiviral immune molecule markers for grass carp.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259940
Author(s):  
Chie Takasu ◽  
Shoko Yamashita ◽  
Yuji Morine ◽  
Kozo Yoshikawa ◽  
Takuya Tokunaga ◽  
...  

The expression of programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) indicate the efficacy of anti-PD-1/PD-L1 therapy in colorectal cancer (CRC), but are less useful for monitoring the efficacy of therapy of CRC liver metastasis (CRLM). This study investigated the effects of immune molecules on the prognosis of CRLM. We enrolled 71 patients with CRLM who underwent curative resection for CRC. We used immunohistochemistry to analyze the expression of PD-1, PD-L1, indoleamine-pyrrole 2,3-dioxygenase (IDO), and CD163 (a marker of tumor-associated macrophages [TAMs]) in metastatic tumors. The immune molecules PD-1, PD-L1, IDO, and TAMs were expressed in 32.3%, 47.8%, 45.0%, and 47.9% of metastatic CRC samples, respectively. The 5-year overall survival rates associated with immune molecule-positive groups were significantly better than in the negative groups (PD-1: 87.7% vs 53.2%, p = 0.023; PD-L1: 82.4% vs 42.3%, p = 0.007; IDO: 80.7% vs 43.5%, p = 0.007; TAMs: 82.6% vs 48.0%, p = 0.005). Multivariate analysis revealed PD-1 expression (p = 0.032, hazard ratio: 0.19), IDO expression (p = 0.049, hazard ratio: 0.37), and tumor differentiation (p<0.001, hazard ratio: 0.02) as independent prognostic indicators. PD-1 and TAMs in metastases were associated with less aggressive features such as smaller tumors. Furthermore, TAMs positively and significantly correlated with PD-1 expression (p = 0.011), PD-L1 expression (p = 0.024), and tended to correlate with IDO expression (p = 0.078). PD-1, PD-L1, IDO, and TAMs in CRLM were associated with less aggressive features and better prognosis of patients with CRC, indicating adaptive antitumor immunity vs immune tolerance. These molecules may therefore serve as prognostic markers for CRLM.


Author(s):  
Andrew McKeon ◽  
B. Mark Keegan ◽  
W. Oliver Tobin

In the past 2 decades, diagnostics and therapeutics in neuroimmunology have rapidly evolved and increased in complexity. Diagnosis is assisted by various laboratory and advanced imaging techniques. Randomized clinical trials in multiple sclerosis and neuromyelitis optica, and smaller studies for rarer autoimmune diseases, have led to distinct immune molecule–targeted and mechanism-specific therapies. The fields of cerebrovascular medicine, neurooncology, and neuroinfectious diseases have not remained static either. All of these gains present a challenge, however, in that early and accurate neurologic diagnosis is more important than ever. In our experience, some diagnostic pitfalls lie in the interpretation of test results and images without reference to the nuances of the clinical history and examination. Although some things change (eg, technology), other things never change (eg, clinical common sense). The 83 case-based chapters focus on key components of the history, examination and test findings, and differential diagnosis, although we also reference treatment approaches extensively throughout. To bring some form to this extensive repertoire of cases, the book is divided into 3 sections covering central nervous system demyelinating disease, autoimmune neurologic disorders, and others. Illustrations include imaging and, where relevant, pathologic images and video material. Board review–style questions are also provided.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Peter F. Billingsley ◽  
Kasim I. George ◽  
Abraham G. Eappen ◽  
Robert A. Harrell ◽  
Robert Alford ◽  
...  

Abstract Background Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. Methods Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. Results LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. Conclusions Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria’s PfSPZ products.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ben Wang ◽  
Hai Mou ◽  
Mengmeng Liu ◽  
Zhujie Ran ◽  
Xin Li ◽  
...  

AbstractThe success of immunotherapy was overshadowed by its low response rate, and the hot or cold tumor microenvironment was reported to be responsible for it. However, due to the lack of an appropriate method, it is still a huge challenge for researchers to understand the molecular differences between hot and cold tumor microenvironments. Further research is needed to gain deeper insight into the molecular characteristics of the hot/cold tumor microenvironment. A large-scale clinical cohort and single-cell RNA-seq technology were used to identify the molecular characteristics of inflamed or noninflamed tumors. With single-cell RNA sequencing technology, we provided a novel method to dissect the tumor microenvironment into a hot/cold tumor microenvironment to help us understand the molecular differences between hot and cold tumor microenvironments. Compared with cold tumors, hot tumors highly expressed B cell-related genes, such as MS4A1 and CXCR5, neurogenesis-related miRNA such as MIR650, and immune molecule-related lncRNA such as MIR155HG and LINC00426. In cold tumors, the expression of genes related to multiple biological processes, such as the neural system, was significantly upregulated, and methylome analysis indicated that the promoter methylation level of genes related to neurogenesis was significantly reduced. Finally, we investigated the pan-cancer prognostic value of the cold/hot microenvironment and performed pharmacogenomic analysis to predict potential drugs that may have the potential to convert the cold microenvironment into a hot microenvironment. Our study reveals the multiomics characteristics of cold/hot microenvironments. These molecular characteristics may contribute to the understanding of immune exclusion and the development of microenvironment-targeted therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Miao-Hsi Hsieh ◽  
Nazar Beirag ◽  
Valarmathy Murugaiah ◽  
Yu-Chi Chou ◽  
Wen-Shuo Kuo ◽  
...  

Human SP-D is a potent innate immune molecule whose presence at pulmonary mucosal surfaces allows its role in immune surveillance against pathogens. Higher levels of serum SP-D have been reported in the patients with severe acute respiratory syndrome coronavirus (SARS-CoV). Studies have suggested the ability of human SP-D to recognise spike glycoprotein of SARS-CoV; its interaction with HCoV-229E strain leads to viral inhibition in human bronchial epithelial (16HBE) cells. Previous studies have reported that a recombinant fragment of human SP-D (rfhSP-D) composed of 8 Gly-X-Y repeats, neck and CRD region, can act against a range of viral pathogens including influenza A Virus and Respiratory Syncytial Virus in vitro, in vivo and ex vivo. In this context, this study was aimed at examining the likely protective role of rfhSP-D against SARS-CoV-2 infection. rfhSP-D showed a dose-responsive binding to S1 spike protein of SARS-CoV-2 and its receptor binding domain. Importantly, rfhSP-D inhibited interaction of S1 protein with the HEK293T cells overexpressing human angiotensin converting enzyme 2 (hACE2). The protective role of rfhSP-D against SARS-CoV-2 infection as an entry inhibitor was further validated by the use of pseudotyped lentiviral particles expressing SARS-CoV-2 S1 protein; ~0.5 RLU fold reduction in viral entry was seen following treatment with rfhSP-D (10 µg/ml). These results highlight the therapeutic potential of rfhSP-D in SARS-CoV-2 infection and merit pre-clinical studies in animal models.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 640
Author(s):  
Ata Abbasi ◽  
David S. Phelps ◽  
Radhika Ravi ◽  
Joanna Floros

In this opinion article, we discuss a serendipitous observation we made in a study investigating survival in aged mice after bacterial infection. This observation involved a non-invasive ventilation approach that led to variable and higher survival in male and female mice with different genetic backgrounds for the innate immune molecule, surfactant protein A (SP-A). We suggest that employing the best ventilatory modality, whether that be HFNC or another method, may augment the role of other factors such as SP-A genetics and sex in a personalized approach, and may ultimately improve the outcome.


Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 11
Author(s):  
Xinlei Yan ◽  
Wenying Han ◽  
Xianyong Liu ◽  
Xun Suo

Egress plays a vital role in the life cycle of apicomplexan parasites including Eimeria tenella, which has been attracting attention from various research groups. Many recent studies have focused on early egress induced by immune molecules to develop a new method of apicomplexan parasite elimination. In this study, we investigated whether nitric oxide (NO), an immune molecule produced by different types of cells in response to cytokine stimulation, could induce early egress of eimerian sporozoites in vitro. Eimeria tenella sporozoites were extracted and cultured in primary chicken kidney cells. The number of sporozoites egressed from infected cells was analyzed by flow cytometry after treatment with NO released by sodium nitroferricyanide (II) dihydrate. The results showed that exogenous NO stimulated the rapid egress of E. tenella sporozoites from primary chicken kidney cells before replication of the parasite. We also found that egress was dependent on intra-parasitic calcium ion (Ca2+) levels and no damage occurred to host cells after egress. The virulence of egressed sporozoites was significantly lower than that of fresh sporozoites. The results of this study contribute to a novel field examining the interactions between apicomplexan parasites and their host cells, as well as that of the clearance of intracellular pathogens by the host immune system.


2020 ◽  
Author(s):  
Miao-Hsi Hsieh ◽  
Nazar beirag ◽  
Valarmathy Murugaiah ◽  
Yu-Chi Chou ◽  
Wen-Shuo Kuo ◽  
...  

AbstractHuman SP-D is a potent innate immune molecule whose presence at pulmonary mucosal surfaces allows immune surveillance role against pulmonary pathogens. Higher levels of serum SP-D have been reported in patients with severe acute respiratory syndrome coronavirus-1 (SARS-CoV). Studies have suggested the ability of human SP-D to recognise spike glycoprotein of SARS-CoV; its interaction with HCoV-229E strain leads to viral inhibition in human bronchial epithelial (16HBE) cells. Previous studies have reported that a recombinant fragment of human SP-D (rfhSP-D) composed of 8 Gly-X-Y repeats, neck and CRD region, can act against a range of viral pathogens including influenza A Virus and Respiratory Syncytial Virus in vitro, in vivo and ex vivo models. In this context, this study was aimed at examining the likely protective role of rfhSP-D against SARS-CoV-2 infection. rfhSP-D showed a dose-responsive binding to S1 spike protein of SARS-CoV-2 and its receptor binding domain. Importantly, rfhSP-D inhibited interaction of S1 protein with the HEK293T cells overexpressing Angiotensin Converting Enzyme 2. The protective role of rfhSP-D against SARS-CoV-2 infection as an entry inhibitor was further validated by the use of pseudotyped lentiviral particles expressing SARS-CoV-2 S1 protein; ~0.5 RLU fold reduction in viral entry was seen following rfhSP-D treatment (10 μg/ml). The results highlight the therapeutic potential of rfhSP-D in SARS-CoV-2 infection and merits pre-clinical studies in murine models.


Sign in / Sign up

Export Citation Format

Share Document