scholarly journals Negative Influence by the Force: Mechanically Induced Hyperpolarization via K2P Background Potassium Channels

2021 ◽  
Vol 22 (16) ◽  
pp. 9062
Author(s):  
Miklós Lengyel ◽  
Péter Enyedi ◽  
Gábor Czirják

The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.

1999 ◽  
Vol 90 (4) ◽  
pp. 1092-1102 ◽  
Author(s):  
Christoph H. Kindler ◽  
Spencer C. Yost ◽  
Andrew T. Gray

Background Recently, a new structural family of potassium channels characterized by two pore domains in tandem within their primary amino acid sequence was identified. These tandem pore domain potassium channels are not gated by voltage and appear to be involved in the control of baseline membrane conductances. The goal of this study was to identify mechanisms of local anesthetic action on these channels. Methods Oocytes of Xenopus laevis were injected with cRNA from five cloned tandem pore domain baseline potassium channels (TASK, TREK-1, TOK1, ORK1, and TWIK-1), and the effects of several local anesthetics on the heterologously expressed channels were assayed using two-electrode voltage-clamp and current-clamp techniques. Results Bupivacaine (1 mM) inhibited all studied tandem pore potassium channels, with TASK inhibited most potently. The potency of inhibition was directly correlated with the octanol: buffer distribution coefficient of the local anesthetic, with the exception of tetracaine, to which TASK is relatively insensitive. The approximate 50% inhibitory concentrations of TASK were 709 microM mepivacaine, 222 microM lidocaine, 51 microM R(+)-ropivacaine, 53 microM S(-)-ropivacaine, 668 microM tetracaine, 41 microM bupivacaine, and 39 microM etidocaine. Local anesthetics (1 mM) significantly depolarized the resting membrane potential of TASK cRNA-injected oocytes compared with saline-injected control oocytes (tetracaine 22+/-6 mV rs. 7+/-1 mV, respectively, and bupivacaine 31+/-7 mV vs. 6+/-4 mV). Conclusions Local anesthetics inhibit tandem pore domain baseline potassium channels, and they could depolarize the resting membrane potential of cells expressing these channels. Whether inhibition of these channels contributes to conduction blockade or to the adverse effects of local anesthetics remains to be determined.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1489-C1489
Author(s):  
Ashley Pike ◽  
Yin Dong ◽  
Alexandra Mackenzie ◽  
Conor McClenaghan ◽  
Shubhashish Mukhopadhyay ◽  
...  

TREK-1/2 are members of the mechano-gated subfamily of two-pore (K2P) domain potassium channels leaking K+ out of the cell and contributing to the resting membrane potential. In contrast to the classical tetrameric potassium channels, K2P channels are dimeric with an atypical architecture and the structural mechanisms underlying their channel gating are poorly understood. Here we present the crystal structures of human TREK-1 and TREK-2 at resolutions of 2.7 and 3.4Å which provide insights into the basis of intracellular and extracellular gating in this unique family of ion channels. We have solved the structure of TREK-2 in two distinct conformations differing in the orientation of the pore-lining transmembrane helices. The C-terminal M4 helix is hinged at a conserved glycine residue so that it adopts one of two distinct orientations. The M4 helix is either kinked towards the membrane, packing against the M2 inner helix of the adjacent subunit ("M4 up") or straightens and interacts with the M2/M3 helices from the same subunit ("M4 down"). In the M4 down state, a hydrophobic lateral opening runs perpendicular to the ion conductance pathway between M2 and M4 and links the inner vestibule to the membrane-exposed face of the channel. Transition between the "M4 down" and "M4 up" conformations may play a role in channel activation and gating. Cocrystallisation with a TREK-1/2 channel inhibitor promotes the "M4 down" state. The structure of TREK-1 exhibits an "M4-up" conformation but is unusual in that the selectivity filter is significantly distorted with only two correctly-formed potassium sites. The structure also reveals a divalent ion binding site between the extracellular cap and the pore domain loop. The TREK-1 structure illustrates how changes at an extracellular site can affect the pore structure. The structures will be described in detail along with their implications for channel gating in response to intracellular and extracellular stimuli.


2015 ◽  
Vol 467 (5) ◽  
pp. 865-866 ◽  
Author(s):  
Thomas Budde ◽  
Jürgen Daut ◽  
Armin Kurtz ◽  
Hans-Christian Pape

2004 ◽  
Vol 92 (3) ◽  
pp. 1928-1936 ◽  
Author(s):  
Trevor A. Richter ◽  
Gennady A. Dvoryanchikov ◽  
Nirupa Chaudhari ◽  
Stephen D. Roper

Sour (acid) taste is postulated to result from intracellular acidification that modulates one or more acid-sensitive ion channels in taste receptor cells. The identity of such channel(s) remains uncertain. Potassium channels, by regulating the excitability of taste cells, are candidates for acid transducers. Several 2-pore domain potassium leak conductance channels (K2P family) are sensitive to intracellular acidification. We examined their expression in mouse vallate and foliate taste buds using RT-PCR, and detected TWIK-1 and -2, TREK-1 and -2, and TASK-1. Of these, TWIK-1 and TASK-1 were preferentially expressed in taste cells relative to surrounding nonsensory epithelium. The related TRESK channel was not detected, whereas the acid-insensitive TASK-2 was. Using confocal imaging with pH-, Ca2+-, and voltage-sensitive dyes, we tested pharmacological agents that are diagnostic for these channels. Riluzole (500 μM), selective for TREK-1 and -2 channels, enhanced acid taste responses. In contrast, halothane (≤ ∼17 mM), which acts on TREK-1 and TASK-1 channels, blocked acid taste responses. Agents diagnostic for other 2-pore domain and voltage-gated potassium channels (anandamide, 10 μM; Gd3+, 1 mM; arachidonic acid, 100 μM; quinidine, 200 μM; quinine, 100 mM; 4-AP, 10 mM; and TEA, 1 mM) did not affect acid responses. The expression of 2-pore domain channels and our pharmacological characterization suggest that a matrix of ion channels, including one or more acid-sensitive 2-pore domain K channels, could play a role in sour taste transduction. However, our results do not unambiguously identify any one channel as the acid taste transducer.


2005 ◽  
Vol 12 (7) ◽  
pp. 808-813 ◽  
Author(s):  
Rafael Godínez Fernández ◽  
Joaquín Azpiroz Leehan ◽  
Reyna Fierro Pastrana ◽  
Rocío Ortíz Muñiz

ABSTRACT Severe malnutrition in children is frequently associated with infectious diseases. Animal models have been useful for studying the effects of malnutrition. One of the immunosuppressive mechanisms of malnutrition is inhibition of the activation of T lymphocytes. The voltage-dependent K(V) potassium channels are vital for the activation of T lymphocytes. The blockade of K(V) channels inhibits the activation of T lymphocytes. Malnutrition could affect the suitable synthesis of K(V) channels in T lymphocytes, producing changes in the magnitude and/or dependency of the voltage of the K+ current. We reported a significant decrease in the K+ current and activation to a 20 mV more positive membrane potential in T lymphocytes of rats with severe malnutrition. These results indicate that the diminution in the K+ conductance by alteration of K(V) channels in severe malnutrition is one of the mechanisms that inhibit the activation of T lymphocytes.


2013 ◽  
Vol 289 (3) ◽  
pp. 1388-1401 ◽  
Author(s):  
Mickael-F El Hachmane ◽  
Kathryn A. Rees ◽  
Emma L. Veale ◽  
Vadim V. Sumbayev ◽  
Alistair Mathie

TASK3 two-pore domain potassium (K2P) channels are responsible for native leak K channels in many cell types which regulate cell resting membrane potential and excitability. In addition, TASK3 channels contribute to the regulation of cellular potassium homeostasis. Because TASK3 channels are important for cell viability, having putative roles in both neuronal apoptosis and oncogenesis, we sought to determine their behavior under inflammatory conditions by investigating the effect of TNFα on TASK3 channel current. TASK3 channels were expressed in tsA-201 cells, and the current through them was measured using whole cell voltage clamp recordings. We show that THP-1 human myeloid leukemia monocytes, co-cultured with hTASK3-transfected tsA-201 cells, can be activated by the specific Toll-like receptor 7/8 activator, R848, to release TNFα that subsequently enhances hTASK3 current. Both hTASK3 and mTASK3 channel activity is increased by incubation with recombinant TNFα (10 ng/ml for 2–15 h), but other K2P channels (hTASK1, hTASK2, hTREK1, and hTRESK) are unaffected. This enhancement by TNFα is not due to alterations in levels of channel expression at the membrane but rather to an alteration in channel gating. The enhancement by TNFα can be blocked by extracellular acidification but persists for mutated TASK3 (H98A) channels that are no longer acid-sensitive even in an acidic extracellular environment. TNFα action on TASK3 channels is mediated through the intracellular C terminus of the channel. Furthermore, it occurs through the ASK1 pathway and is JNK- and p38-dependent. In combination, TNFα activation and TASK3 channel activity can promote cellular apoptosis.


2021 ◽  
Author(s):  
Lamyaa Khoubza ◽  
Eun-Jin Kim ◽  
Franck C Chatelain ◽  
Sylvain Feliciangeli ◽  
Dawon Kang ◽  
...  

Two-pore domain (K2P) potassium channels are active as dimers. They produce inhibitory currents regulated by a variety of stimuli. Among them, TALK1, TALK2 and TASK2 form a subfamily of structurally related K2P channels stimulated by extracellular alkalosis. The human genes encoding them are clustered on chromosomal region 6p21. They are expressed in different tissues including the pancreas. By analyzing single cell transcriptomic data, we show that these channels are co-expressed in insulin-secreting pancreatic β cells. By different approaches we show that they form functional heterodimers. Heteromerization of TALK2 with TALK1 or with TASK2 endorses TALK2 with sensitivity to extracellular alkalosis in the physiological range. The association of TASK2 with TALK1 and TALK2 increases their unitary conductance. These results provide a new example of heteromerization in the K2P channel family expanding the range of their potential physiological and pathophysiological roles.


Sign in / Sign up

Export Citation Format

Share Document